全文获取类型
收费全文 | 100篇 |
免费 | 6篇 |
专业分类
106篇 |
出版年
2022年 | 2篇 |
2021年 | 7篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 3篇 |
2013年 | 4篇 |
2012年 | 5篇 |
2011年 | 6篇 |
2010年 | 2篇 |
2009年 | 6篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2005年 | 5篇 |
2004年 | 2篇 |
2003年 | 4篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1988年 | 2篇 |
1985年 | 1篇 |
1984年 | 3篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 3篇 |
1972年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
2.
In the present study, we used osteoprotegerin (OPG), which blocks osteoclastogenesis, to correct and thus explain the hypercalcemia that is seen during dietary Mg deficiency in the mouse. Control and Mg-deficient mice received injections for 12 days of either OPG or vehicle only. Serum Ca was similar in Mg-deficient mice treated with OPG and in control mice receiving OPG (9.2±0.3 mg/dl vs. 9.2±0.5). Both groups had significantly higher serum Ca than controls or Mg-deficient animals receiving vehicle alone. Surprisingly, Mg-depleted mice that received OPG in doses that inhibit osteoclastic bone resorption remained hypercalcemic. Because mature osteoclasts still present in the marrow might be hyperactive, we examined osteoclast morphology at the light microscopic and ultrastructural level. Light microscopic examination of trabecular bone showed few osteoclasts in OPG-treated mice. Ultrastructural examination revealed that osteoclasts in OPG-treated mice have decreased contact with the endosteal bone surface and absence of a ruffled border. Because the morphology of the existing pool of mature osteoclasts did not enhance resorption, another mechanism, such as increased intestinal absorption of Ca in Mg-deficient mice, likely contributes to the hypercalcemia observed during Mg deficiency. 相似文献
3.
Srijani Ghanta Dipto Bhattacharyya Sharmila Chattopadhyay 《Plant signaling & behavior》2011,6(4):607-609
Glutathione (GSH) has widely been known to be a multifunctional molecule especially as an antioxidant up until now, but has found a new role in plant defense signaling. Research from the past three decades indicate that GSH is a player in pathogen defense in plants, but the mechanism underlying this has not been elucidated fully. We have recently shown that GSH acts as a signaling molecule and mitigates biotic stress through non-expressor of PR genes 1 (NPR1)-dependent salicylic acid (SA)-mediated pathway. Transgenic tobacco with enhanced level of GSH (NtGB lines) was found to synthesize more SA, was capable of enhanced expression of genes belonging to NPR1-dependent SA-mediated pathway, were resistant to Pseudomonas syringae, the biotrophic pathogen and many SA-related proteins were upregulated. These results gathered experimental evidence on the mechanism through which GSH combats biotic stress. In continuation with our previous investigation we show here that the expression of glutathione S-transferase (GST), the NPR1-independent SA-mediated gene was unchanged in transgenic tobacco with enhanced level of GSH as compared to wild-type plants. Additionally, the transgenic plants were barely resistant to Botrytis cinerea, the necrotrophic pathogen. SA-treatment led to enhanced level of expression of pathogenesis-related protein gene (PR1) and PR4 as against short-chain dehydrogenase/reductase family protein (SDRLP) and allene oxide synthase (AOS). These data provided significant insight into the involvement of GSH in NPR1-dependent SA-mediated pathway in mitigating biotic stress.Key words: GSH, signaling molecule, biotrophic pathogen, NPR-1, PR-1, PR-4, transgenic tobaccoPlant responses to different environmental stresses are achieved through integrating shared signaling networks and mediated by the synergistic or antagonistic interactions with the phytohormones viz. SA, jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and reactive oxygen species (ROS).1 Previous studies have shown that in response to pathogen attack, plants produce a highly specific blend of SA, JA and ET, resulting in the activation of distinct sets of defense-related genes.2,3 Regulatory functions for ROS in defense, with a focus on the response to pathogen infection occur in conjunction with other plant signaling molecules, particularly with SA and nitric oxide (NO).4–6 Till date, numerous physiological functions have been attributed to GSH in plants.7–11 In addition to previous studies, recent study has also shown that GSH acts as a signaling molecule in combating biotic stress through NPR1-dependent SA-mediated pathway.12,13Our recent investigation involved raising of transgenic tobacco overexpressing gamma-glutamylcysteine synthetase (γ-ECS), the rate-limiting enzyme of the GSH biosynthetic pathway.12 The stable integration and enhanced expression of the transgene at the mRNA as well as protein level was confirmed by Southern blot, quantitative RT-PCR and western blot analysis respectively. The transgenic plants of the T2 generation (Fig. 1), the phenotype of which was similar to that of wild-type plants were found to be capable of synthesizing enhanced amount of GSH as confirmed by HPLC analysis.Open in a separate windowFigure 1Transgenic tobacco of T2 generation, (A) three-week-old plant, (B) mature plant.In the present study, the expression profile of GST was analyzed in NtGB lines by quantitative RT-PCR (qRT-PCR) and found that the expression level of this gene is unchanged in NtGB lines as compared to wild-type plants (Fig. 2). GST is known to be a NPR1-independent SA-related gene.14 This suggests that GSH does not follow the NPR1-independent SA-mediated pathway in defense signaling.Open in a separate windowFigure 2Expression pattern of GST in wild-type and NtGB lines.Disease test assay with NtGB lines and wild-type plants was performed using B. cinerea and the NtGB lines showed negligible rate of resistance to this necrotrophic pathogen (Fig. 3). SA signaling has been known to control defense against biotrophic pathogen in contrast, JA/ET signaling controls defense against necrotrophic pathogen.1,15 Thus it has again been proved that GSH is not an active member in the crosstalk of JA-mediated pathway, rather it follows the SA-mediated pathway as has been evidenced earlier.12Open in a separate windowFigure 3Resistance pattern of wild-type and NtGB lines against Botrytis cinerea.Additionally, the leaves of wild-type and NtGB lines were treated with 1 mM SA and the expression of PR1, SDRLP, AOS and PR4 genes were analyzed and compared to untreated plants to simulate pathogen infection. The expression of PR1 increased after exogenous application of SA. In case of PR4, the ET marker, the expression level increased in NtGB lines. On the other hand, the level of SDRLP was nearly the same. However, the expression of AOS was absent in SA-treated leaves (Fig. 4). PR1 has been known to be induced by SA-treatment16 which can be corroborated with our results. In addition, ET is known to enhance SA/NPR1-dependent defense responses,17 which was reflected in our study as well. AOS, the biosynthetic pathway gene of JA, further known to be the antagonist of SA, was downregulated in SA-treated plants.Open in a separate windowFigure 4Gene expression pattern of PR1, SDRLP, PR4 and AOS in untreated and SA-treated wildtype and NtGB lines.Taken together, it can be summarized that this study provided new evidence on the involvement of GSH with SA in NPR1-dependent manner in combating biotic stress. Additionally, it can be claimed that GSH is a signaling molecule which takes an active part in the cross-communication with other established signaling molecules like SA, JA, ET in induced defense responses and has an immense standpoint in plant defense signaling. 相似文献
4.
A Puri R Sethi B Singh SK Dwivedi VS Narain RK Saran VK Puri 《Indian pacing and electrophysiology journal》2009,9(3):186-189
A 25-year-old previously asymptomatic pregnant woman at 36 weeks'' gestation was noticed to have repetitive monomorphic ventricular tachycardia. A dilated left ventricle with moderately reduced systolic function was found on echocardiographic examination. This is a very rare presentation of peripartum cardiomyopathy (PPCMP) presenting with repetitive monomorphic ventricular tachycardia. 相似文献
5.
Green synthesis method is being increasingly used in the development of safe, stable, and eco-friendly nanostructures with biological resources. In this study, extracellular and intracellular synthesis of gold nanoparticles (AuNPs) was carried out using green algae Chlorella sorokiniana Shihira & R.W. Fresh algae were isolated and identified from Musaözü Pond located in the province of Eskişehir and then extraction process were performed. Optimization studies were studied using pH value, metal salt concentration, and time parameters for extracellular synthesis and using only time parameter for intrasellular synthesis. Since more controlled and optimum conditions can be achieved in the production of AuNPs by extracellular synthesis, these nanoparticles (NPs) were used for characterization and antifungal activity studies. Optical, physical, and chemical properties of synthesized NPs were characterized by UV visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), Zetasizer, X-Ray diffraction (XRD), Fourier transform ınfrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), ınductively coupled plasma mass spectrometer (ICP-MS) and transmission electron microscope (TEM) analysis. The optimum conditions for AuNPs synthesis were determined as 1 mM for HauCl4 concentration, 6 for pH value, and 60th min for time. AuNPs obtained from extracellular synthesis from C. sorokiniana extract are 5–15 nm in size and spherical shape. TEM images of extracellular synthesis show noticeable cell wall and membrane damages, cytoplasma dissolutions, and irregularities. AuNPs obtained by intracellular synthesis are in 20–40 nm size and localized in the cell wall and cytoplasm. These NPs exhibited significant antifungal activity against C. tropicalis, C. glabrata, and C. albicans isolates. AuNPs obtained by algae-mediated green synthesis have a significant potential for medical and industrial use, and this eco-friendly synthesis method can be easily scaled for future studies. 相似文献
6.
Continuous monitoring of phytoplankton dynamics in Lake Balaton (Hungary) using on-line delayed fluorescence excitation spectroscopy 总被引:5,自引:0,他引:5
VERA ISTVÁNOVICS MÁRK HONTI RÁS OSZTOICS HESHAM M. SHAFIK JUDIT PADISÁK YOSSEF YACOBI WERNER ECKERT 《Freshwater Biology》2005,50(12):1950-1970
1. This study introduces delayed fluorescence (DF) excitation spectroscopy as an on‐line tool for in situ monitoring of the composition and biomass of various colour classes of phytoplankton when they are photosynthetically active (cyanobacteria, chlorophytes, chromophytes and cryptophytes). The DF data are validated by comparison with those from conventional methods (weekly microscopic counts and the measurement of chlorophyll concentration). 2. The composition of phytoplankton as assessed by DF agreed reasonably well with the results from microscopic counts, particularly when differences in chlorophyll‐specific DF integrals of the various colour classes were taken into account. 3. Integrals of DF spectra were converted into concentration of chlorophyll a using empirical factors derived from field data. The value of the conversion factor was nearly twice as high when the relative abundance of cyanobacteria was low (<15%) than when it was high. The converted DF‐chl time series agreed well with chlorophyll measurements particularly when blooms were developing. As the DF method is inherently free of the interference caused by pigment degradation products, the discrepancy between the two data sets increased during the collapse of blooms and when sediment resuspension was intense. 4. Fourier spectrum analysis of the time series of DF‐chl indicated that samples must be taken, at a minimum, every 2–3 days to capture the dynamics of phytoplankton. As a consequence, the dynamics of various algal blooms, including their timing, duration and net growth rate, could be estimated with greater confidence than by using conventional methods alone. 5. On‐line DF spectroscopy is an advanced technique for monitoring daily the biomass and composition of the photosynthetically active phytoplankton in aquatic environments, including turbid shallow lakes. At present, the detection limit is around 1 mg DF‐chl a m?3 in terms of total biomass but confidence in estimates of phytoplankton composition declines sharply below about 5 mg chl a m?3. 6. On‐line DF spectroscopy represents a promising approach for monitoring phytoplankton. It will be useful in water management where it can act as an early‐warning system of declines in water quality. In basic ecological research it can supplement manual methods. While default calibration spectra may be acceptable for routine monitoring, we suggest a careful individual calibration of the DF spectrometer for basic research. The statistical methods developed here help to assess the adequacy of various calibration sets. 相似文献
7.
Lars L Eftang Ying Esbensen Tone M Tannæs Ida RK Bukholm Geir Bukholm 《BMC microbiology》2012,12(1):9
Background
The association between Helicobacter pylori infection and upper gastrointestinal disease is well established. However, only a small fraction of H. pylori carriers develop disease, and there are great geographical differences in disease penetrance. The explanation to this enigma lies in the interaction between the bacterium and the host. H. pylori Outer Membrane Phospholipase A (OMPLA) has been suggested to play a role in the virulence of this bacterium. The aim of this study was to profile the most significant cellular pathways and biological processes affected in gastric epithelial cells during 24 h of H. pylori exposure, and to study the inflammatory response to OMPLA+ and OMPLA- H. pylori variants. 相似文献8.
Mickie L Powell Melissa A Pegues Alexander J Szalai Vithal K Ghanta Louis R D'Abramo Stephen A Watts 《Comparative medicine》2015,65(4):289-294
The diets of populations in industrialized nations have shifted to dramatically increased consumption of ω6 polyunsaturated fatty acids (PUFA), with a corresponding decrease in the consumption of ω3 PUFA. This dietary shift may be related to observed increases in obesity, chronic inflammation, and comorbidities in the human population. We examined the effects of ω3:ω6 fatty acid ratios in the context of constant total dietary lipid on the growth, total body fat, and responses of key inflammatory markers in adult zebrafish (Danio rerio). Zebrafish were fed diets in which the ω3:ω6 PUFA ratios were representative of those in a purported ancestral diet (1:2) and more contemporary Western diets (1:5 and 1:8). After 5 mo, weight gain (fat free mass) of zebrafish was highest for those that received the 1:8 ratio treatment, but total body fat was lowest at this ratio. Measured by quantitative real-time RT–PCR, mRNA levels from liver samples of 3 chronic inflammatory response genes (C-reactive protein, serum amyloid A, and vitellogenin) were lowest at the 1:8 ratio. These data provide evidence of the ability to alter zebrafish growth and body composition through the quality of dietary lipid and support the application of this model to investigations of human health and disease related to fat metabolism.Abbreviations: LC-PUFA, long-chain PUFA; PUFA, polyunsaturated fatty acidsMost animals require specific (essential) dietary fatty acids, and deficiencies in these fatty acids typically exert a negative effect on their health at some level. The ω3 and ω6 families of fatty acids are essential polyunsaturated fatty acids (PUFA) or long-chain PUFA (LC-PUFA) for many animals, including humans; however, consensus regarding the recommended dietary levels of these PUFA has not been achieved for any species, including humans. Several studies have proposed that a disproportionately high intake of ω6 PUFA and LC-PUFA promotes inflammation, resulting in chronic inflammatory diseases associated with metabolic syndrome.10,22 This ‘high’ intake is difficult to describe accurately because both individual as well as regional diversity in the dietary intake of ω3 and ω6 fatty acids exist globally. Over the last century, diets in the western hemisphere have shifted to a dramatically increased consumption of total lipids. This increase in total fat consumption is associated with increases in ω6 PUFA and ω6 LC-PUFA intakes and corresponding decreases in ω3 PUFA and ω3 LC-PUFA.16 The shift in the dietary ω3:ω6 ratio, toward ω6 and away from ω3 fatty acids, in industrialized societies has been proposed to be the major factor contributing to inflammatory diseases.22 This proinflammatory effect is often attributed to the production of arachidonic acid metabolites, which act as potent proinflammatory and plaque forming molecules, from ω6 fatty acids, like linoleic acid.7 However, many antiinflammatory mediators also are produced during the metabolism of ω6. Several studies support a possible association between a reduced risk of coronary heart disease and increased dietary ω6 PUFA.7 The American Heart Association Science Advisory Panel has stated, “At present, there is little direct evidence that supports a net proinflammatory, proatherogenic effect of linoleic acid (18:2 ω6) in humans.”11 The authors of a recent review19 concluded that reducing the intake of dietary ω6 fatty acid did not change the levels of arachidonic acid in the plasma, serum, or erythrocytes of adults who consumed western-type, high-fat diets. Other scientists18 have suggested that specific proportional combinations of ω3 and ω6 fatty acids may actually decrease the concentrations of proinflammatory cytokines.Zebrafish continue to gain popularity as an animal model for cardiovascular disease.4 For example, blood vessel plaques formed in zebrafish that consumed a high-cholesterol (4%) diet, mimicking atherosclerosis in humans.24 Recent advances in the area of zebrafish nutrition25 allow the use of formulated diets, wherein the levels of specific nutrients, such as fatty acids, can be modified to evaluate response. The current study evaluated the effects of different dietary ω3:ω6 fatty acid ratios on weight gain, body composition, and inflammatory response proteins in the zebrafish. 相似文献
9.
A synthetic peptide (CaMBP) matching amino acids 3614-3643 of the skeletal ryanodine receptor (RyR1) binds to both Ca2+-free calmodulin (CaM) and Ca2+-bound CaM with nanomolar affinity [J. Biol. Chem. 276 (2001) 2069]. We report here that CaMBP increases [3H]ryanodine binding to RyR1 in a dose- and Ca2+-dependent manner; it also induces Ca2+ release from SR vesicles, and increases open probability (P(o)) of single RyR channels reconstituted in planar lipid bilayers. Further, CaMBP removes CaM associated with SR vesicles and increases [3H]ryanodine binding to purified RyR1, suggesting that its mechanism of action is two-fold: it removes endogenous inhibitors and also interacts directly with complementary regions in RyR1. Remarkably, the N-terminus of CaMBP activates RyRs while the C-terminus of CaMBP inhibits RyR activity, suggesting the presence of two discrete functional subdomains within this region. A ryr1 mutant lacking this region, RyR1-Delta3614-3643, was constructed and expressed in dyspedic myoblasts (RyR1-knockout). The depolarization-, caffeine- and 4-chloro-m-cresol (4-CmC)-induced Ca2+ transients in these cells were dramatically reduced compared with cells expressing wild type RyR1. Deletion of the 3614-3643 region also resulted in profound changes in unitary conductance and channel gating. We thus propose that the RyR1 3614-3643 region acts not only as the CaM binding site, but also as an important modulatory domain for RyR1 function. 相似文献
10.