首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   2篇
  国内免费   1篇
  2022年   2篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2014年   1篇
  2013年   6篇
  2012年   8篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
International Journal of Peptide Research and Therapeutics - Influenza A viruses are among the most studied viruses, however no effective prevention against influenza infection has been developed....  相似文献   
2.

Objectives

To investigated the potential of a novel dendrosomal nanoformulation of curcumin (DNC) in blocking radiation-induced changes in irradiated human umbilical vein endothelial cells (HUVECs), and their adhesion to human THP-1 monocytoid cells.

Results

Co60 gamma rays reduced viability, raised the expression of adhesion molecules, ICAM-1, VCAM-1 and E-selectin (mRNA and protein), augmented the adhesion of THP-1 cells to HUVECs, activated NF-κB binding, increased the release of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) and induced oxidative damage (reduced glutathione declined, while 8-OHdG and TBARS increased). 5 µM DNC significantly inhibited these radiation-induced changes, activated the Nrf-2 pathway, and effectively suppressed THP-1 adhesion to HUVECs, implicating p38 MAPK signaling.

Conclusion

DNC treatment is a potential preventive method against inflammation and vascular damage from ionizing radiation.
  相似文献   
3.
AIMS: Understanding the origin of high thermostability exhibited by the alpha-amylase produced by a natural strain of Bacillus licheniformis. METHODS AND RESULTS: The MSH320 alpha-amylase gene has been cloned from a native strain of B. licheniformis isolated from flour mill wastewaters in Kashan, central Iran, and its nucleotide sequence was determined (GenBank Accession Number AF438149). Whereas previously cloned B. licheniformisalpha-amylase (BLA) genes are nearly identical, the MSH320 gene coding sequence presents only 93% identity with the reference 'wild-type' BLA gene, most of the nucleotide changes leading to silent mutations. Amino acid substitutions occurred at 19 of the 483 residues of the matured protein, distributed all along the protein sequence. Nevertheless, the natural BLA variant presents thermoinactivation kinetics similar to that of the reference BLA. Protein modelling and structural predictions at the substitution sites suggest that half of the mutations may have a significant stabilizing or destabilizing effect on the protein structure. Compensatory mutations thus occurred in the natural variant in order to maintain thermostability to the level of the reference enzyme. CONCLUSIONS: The exceptional high thermostability of BLA, although produced by a nonthermophilic organism, is not fortuitous but subject to a selective pressure still at work in natural environments. SIGNIFICANCE AND IMPACT OF THE STUDY: BLA thermal performances are not naturally maximized and can be substantially improved by protein engineering.  相似文献   
4.
Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell-cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.  相似文献   
5.
The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of differentiating into multiple cells, human unrestricted somatic stem cells (hUSSCs) and human mesenchymal stem cells (hMSCs) seem to be suitable candidates for transfection approaches. Involvement of microRNAs (miRNAs) in many biological processes makes their transfection evaluation valuable. Herein we investigated the efficacy and toxicity of four typically used transfection reagents (Arrest-In, Lipofectamine 2000, Oligofectamine and HiPerfect) systematically to deliver fluorescent labeled-miRNA and Green Fluorescent Protein (GFP) expressing plasmid into hUSSCs and hMSCs. The authenticity of stem cells was verified by differentiation experiments along with flow cytometry of surface markers. Our study revealed that stemness properties of these stem cells were not affected by transient transfection. Moreover the ratios of cell viability and transfection efficiency in both analyzed stem cells were reversed. Considering cell viability, the highest fraction of GFP-expressing cells was obtained using Oligofectamine (~50%) while the highest transfection rate of miRNA was achieved by Lipofectamine 2000 (~90%). Moreover dependency of hMSCs to size of transfected nucleic acid and time-dependency of Oligofectamine and their affection on the yield of transfection were observed. Cytotoxicity assessments also showed that hUSSCs are sensitive to HiPerFect. In addition cells treated by Lipofectamine showed morphological changes. Representing the efficient nucleic acid transfection, our research facilitates comprehensive genetic modification of stem cells and demonstrates powerful approaches to understand stem cell molecular regulation mechanisms, which eventually improves nonviral cell-mediated gene therapy.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-012-9430-9) contains supplementary material, which is available to authorized users.  相似文献   
6.
7.
8.
Exposure to ethanol is a stress condition that Salmonella typhimurium often encounters during its life cycle. Food, beverage, drugs, and cosmetics have a long history of using alcohols to control pathogens. Ethanol is also commonly used for disinfecting medical instruments. This study was conducted to evaluate the ethanol stress variations on the protein profile, cell structure, and serologic features of S. typhimurium. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis revealed the phage shock protein G (pspG), a new ethanol-induced stress protein in cells adapted to 10% ethanol. The result was confirmed by liquid chromatography–mass spectrometry. The maximum quantity of this 9.02-kDa protein was produced in 12.5% (v/v) of ethanol-treated cultures. Scanning electron microscopy has demonstrated new phenotypic characteristics in bacterial structure. The cells were unable to undergo binary fission. This phenomenon explains the tight attachment of bacteria in a colony. Overall, ethanol extreme stress induced expression of new proteins like PspG and repression of some other proteins in S. typhimurium. These induction and repression processes have inflicted dramatic changes on Salmonella behaviors. Alireza Shoae Hassani, Kasra Hamdi and Amir Ghaemi are members of Young Researchers Club (YRC) of Tehran Science & Research Campus of IAU, Tehran, Iran.  相似文献   
9.
Horseradish peroxidase (HRP) has attracted intense research interest due to its potential applications in biotechnological fields. However, inadequate stability under prevalent conditions such as elevated temperatures and H(2)O(2) exposure, has limited its industrial application. In this study, stability of HRP was investigated in the presence of different buffer systems (potassium phosphate and Tris-HCl) and additives. It was shown that the concentration of phosphate buffer severely affects enzyme thermostability in a way that in diluted potassium phosphate buffer (10mM) half-life (from 13 to 35 min at 80 °C) and T(m) (from 73 to 77.5 °C) increased significantly. Among additives tested, trehalose had the most thermostabilizing effect. Exploring the role of glycosylation in stabilizing effect of phosphate buffer, non-glycosylated recombinant HRP was also examined for its thermal and H(2)O(2) stability in both diluted and concentrated phosphate buffers. The recombinant enzyme was more thermally stable in diluted buffer in accordance to glycosylated HRP; but interestingly recombinant HRP showed higher H(2)O(2) tolerance in concentrated buffer.  相似文献   
10.
The immunomodulatory and anti-inflammatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as an appropriate candidate for treatment of autoimmune diseases. Previous studies have revealed that treatment with BM-MSCs may modulate immune responses and alleviate the symptoms in experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Therefore, the present study was designed to examine immunomodulatory effects of BM-MSCs in the treatment of myelin oligodendrocyte glycoprotein (MOG) 35-55-induced EAE in C57BL/6 mice. MSCs were obtained from the bone marrow of C57BL mice, cultured with DMEM/F12, and characterized with flow cytometry for the presence of cell surface markers for BM-MSCs. Following three passages, BM-MSCs were injected intraperitoneally into EAE mice alone or in combination with rapamycin. Immunological and histopathological effects of BM-MSCs and addition of rapamycin to BM-MSCs were evaluated. The results demonstrated that adding rapamycin to BM-MSCs transplantation in EAE mice significantly reduced inflammation infiltration and demyelination, enhanced the immunomodulatory functions, and inhibited progress of neurological impairments compared to BM-MSC transplantation and control groups. The immunological effects of rapamycin and BM-MSC treatments were associated with the inhibition of the Ag-specific lymphocyte proliferation, CD8+ cytolytic activity, and the Th1-type cytokine (gamma-interferon (IFN-γ)) and the increase of Th-2 cytokine (interleukin-4 (IL-4) and IL-10) production. Addition of rapamycin to BM-MSCs was able to ameliorate neurological deficits and provide neuroprotective effects in EAE. This suggests the potential of rapamycin and BM-MSC combined therapy to play neuroprotective roles in the treatment of neuroinflammatory disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号