首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   3篇
  2003年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有62条查询结果,搜索用时 31 毫秒
1.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   
2.
E P Bruggemann  B Doan  K Handwerger  G Storz 《Genetics》1998,149(3):1575-1585
The Arabidopsis HY4 gene encodes the nonessential blue light photoreceptor CRY1. Loss-of-function hy4 mutants have an elongated hypocotyl phenotype after germination under blue light. We previously analyzed 20 independent hy4 alleles produced by fast neutron mutagenesis. These alleles were grouped into two classes based on their genetic behavior and corresponding deletion size: (1) null hy4 alleles that were semidominant over wild type and contained small or moderate-sized deletions at HY4 and (2) null hy4 alleles that were recessive lethal and contained large HY4 deletions. Here we describe one additional fast neutron hy4 mutant, B144, that did not fall into either of these two classes. Mutant B144 was isolated as a heterozygote with an intermediate hy4 phenotype. One allele from this mutant, hy4-B144(Delta), contains a large deletion at HY4 and is recessive lethal. The other allele from this mutant, HY4-B144*, appears to be intact and functional but is unstable and spontaneously converts to a nonfunctional hy4 allele. In addition, HY4-B144* is lethal in homozygotes and suppresses local recombination. We discuss genetic and epigenetic mechanisms that may account for the unusual behavior of the HY4-B144* allele.  相似文献   
3.
A corollary of island biogeographical theory is that islands are largely colonized from their nearest mainland source. Despite Madagascar’s extreme isolation from India and proximity to Africa, a high proportion of the biota of the Madagascar region has Asian affinities. This pattern has rarely been viewed as surprising, as it is consistent with Gondwanan vicariance. Molecular phylogenetic data provide strong support for such Asian affinities, but often not for their vicariant origin; most divergences between lineages in Asia and the Madagascar region post‐date the separation of India and Madagascar considerably (up to 87 Myr), implying a high frequency of dispersal that mirrors colonization of the Hawaiian archipelago in distance. Indian Ocean bathymetry and the magnitude of recent sea‐level lowstands support the repeated existence of sizeable islands across the western Indian Ocean, greatly reducing the isolation of Madagascar from Asia. We put forward predictions to test the role of this historical factor in the assembly of the regional biota. © The Willi Hennig Society 2009.  相似文献   
4.
The purpose of this study was to examine two hypotheses: (a) mat hardness affects foot motion during landing; (b) the influence of a surface stabilising interface integrated in a mat on foot motion is detectable. Two studies were carried out: In the first one, six female gymnasts performed barefoot landings from different falling heights onto three mats having different hardness. In the second study, a stabilising mechanism was integrated in the surface of three new mats with different hardness. Three high speed video cameras (250Hz) captured the motion of the left leg and foot. These were modelled by means of a four rigid body system. The maximal eversion at the ankle joint was not influenced by the different mats (hard: 4.6 degrees +/-1.9 to 9.3 degrees +/-3.4, medium: 3.1 degrees +/-2.7 to 7.4 degrees +/-3.5, soft: 4.8 degrees +/-2.1 to 8.4 degrees +/-3.5). The soft mat without the stabilised surface showed higher eversion values (p<0.05) between forefoot and rearfoot (medial joint: hard: 5.1 degrees +/-3.2 to 7.3 degrees +/-3.3, medium: 6.9 degrees +/-3.1 to 7.5 degrees +/-2.9, soft: 12.7 degrees +/-4.1 to 13.4 degrees +/-3.3; lateral joint: hard: 8.5 degrees +/-3.1 to 9.7 degrees +/-1.1, medium: 9.5 degrees +/-2.6 to 11.2 degrees +/-3.3, soft: 12.1 degrees +/-2.3 to 15.7 degrees +/-3.3). For the mats with the surface stabilising interface, the different hardness did not cause any significant differences in maximal eversion values at the medial (hard: 1.5 degrees +/-3.3 to 5.5 degrees +/-4.5, medium: 1.3 degrees +/-3.5 to 5.1 degrees +/-3.6, soft: 0.7 degrees +/-4.9 to 5.4 degrees +/-4.2) nor at the lateral (hard: 11.3 degrees +/-4.2 to 17.3 degrees +/-4.2, medium: 12.3 degrees +/-4.8 to 17.1 degrees +/-3.7, soft: 11.5 degrees +/-4.6 to 17.1 degrees +/-4.3) forefoot joints. The structure of the mat and the consequent deformation hollow did not influence the kinematics of the ankle joint during landings, but it influenced the motion at the medial and the lateral forefoot joints. By means of a stabilised surface, it is possible to reduce the influence of mat deformation on the maximal eversion between forefoot and rearfoot.  相似文献   
5.
Satellite and compiled in situ observations of sea surface temperatures have greatly increased the ability to detect anomalous and persistent warm water and are being widely used to predict climate change, coral bleaching and mortality. A field-based synoptic view of coral bleaching spanning eight countries and ∼35° of latitude in the western Indian Ocean tested the accuracy of synoptic temperature data derived from satellites and shipboard data to detect and predict bleaching during 2005. The ability to predict the degree of bleaching based on degree heating weeks data was moderate, but increased when past temperature anomalies and coral community susceptibility were included. It is estimated that slightly more than half of the bleaching response is due to anomalous warm water and nearly half due to taxa and community level acclimation or adaptation, where these two factors have opposing effects. Cumulative temperature anomalies do identify general areas with bleaching but both large over and underestimates of bleaching intensity were observed. Consequently, field observations are needed to confirm the synoptic satellite predictions for particular reefs, particularly where acclimation and reorganization of the coral community have occurred due to past bleaching events.  相似文献   
6.
The purposes of this study were: (a) to examine the interactions between the athlete and the pole and the possibility for the athlete to take advantage of the pole's elasticity by means of muscular work and (b) to develop performance criteria during the interaction between the athlete and the pole in pole vaulting. Six athletes performed 4-11 trials each, at 90% of their respective personal best performance. All trials were recorded using four synchronized, genlocked video cameras operating at 50 Hz. The ground reaction forces exerted on the bottom of the pole were measured using a planting box fixed on a force plate (1000 Hz). The interaction between athlete and pole may be split into two parts. During the first part, energy is transferred into the pole and the total energy of the athlete decreases. The difference between the energy decrease of the athlete and the pole energy is an indicator of the energy produced by the athletes by means of muscular work (criterion 1). During the second part of the interaction, energy is transferred back to the athlete and the total energy of the athlete increases. The difference between the returned pole energy and the amount of energy increase of the athlete defines criterion 2. In general, the function of the pole during the interaction is: (a) store part of the kinetic energy that the athlete achieved during the run up as strain energy and convert this strain energy into potential energy of the athlete, (b) allow the active system (athlete) to produce muscular work to increase the total energy potential.  相似文献   
7.
The objective of the study was to investigate the adjustment of running mechanics by wearing five different types of running shoes on tartan compared to barefoot running on grass focusing on the gearing at the ankle and knee joints. The gear ratio, defined as the ratio of the moment arm of the ground reaction force (GRF) to the moment arm of the counteracting muscle tendon unit, is considered to be an indicator of joint loading and mechanical efficiency. Lower extremity kinematics and kinetics of 14 healthy volunteers were quantified three dimensionally and compared between running in shoes on tartan and barefoot on grass. Results showed no differences for the gear ratios and resultant joint moments for the ankle and knee joints across the five different shoes, but showed that wearing running shoes affects the gearing at the ankle and knee joints due to changes in the moment arm of the GRF. During barefoot running the ankle joint showed a higher gear ratio in early stance and a lower ratio in the late stance, while the gear ratio at the knee joint was lower during midstance compared to shod running. Because the moment arms of the counteracting muscle tendon units did not change, the determinants of the gear ratios were the moment arms of the GRF's. The results imply higher mechanical stress in shod running for the knee joint structures during midstance but also indicate an improved mechanical advantage in force generation for the ankle extensors during the push-off phase.  相似文献   
8.
The purpose of this study was to provide evidence on the fact that the observed decrease in EMG activity of the gastrocnemius medialis (GM) at pronounced knee flexed positions is not only due to GM insufficiency, by examining muscle fascicle lengths during maximal voluntary contractions at different positions. Twenty-two male long distance runners (body mass: 78.5+/-6.7 kg, height: 183+/-6 cm) participated in the study. The subjects performed isometric maximal voluntary plantar flexion contractions (MVC) of their left leg at six ankle-knee angle combinations. To examine the resultant ankle joint moments the kinematics of the left leg were recorded using a Vicon 624 system with 8 cameras operating at 120 Hz. The EMG activity of GM, gastrocnemius lateralis (GL), soleus (SOL) and tibialis anterior (TA) were measured using surface electromyography. Synchronously, fascicle length and pennation angle values of the GM were obtained at rest and at the plateau of the maximal plantar flexion using ultrasonography. The main findings were: (a) identifiable differences in fascicle length of the GM at rest do not necessarily imply that these differences would also exist during a maximal isometric plantar flexion contraction and (b) the EMG activity of the biarticular GM during the MVC decreased at a pronounced flexed knee-joint position (up to 110 degrees ) despite of no differences in GM fascicle length. It is suggested that the decrease in EMG activity of the GM at pronounced knee flexed positions is due to a critical force-length potential of all three muscles of the triceps surae.  相似文献   
9.
10.
In this study, we examined whether different exercise modes provoke functional differences in maximal and explosive force-generating capacities and fatigability of the quadriceps femoris (QF). Additionally, the interaction of different functional capacities was studied in competitive athletes. Ten competitive tennis players and 10 endurance athletes participated in the study. Pre-exercise force-generating capacities were determined during maximal voluntary isometric knee extensions (MVC). Fatigability of the QF was studied using sustained isometric contractions with target loads of 20% and 40% of pre-exercise MVC. Postexercise MVCs were conducted 20 seconds, 1 minute, and 3 minutes post task failure. Muscle activation of the QF during the fatiguing exercises and postexercise MVCs was estimated using surface electromyography. Higher explosive force-generating capacities, but no differences in absolute moments, were detected in tennis players compared with endurance athletes. Fatigability of the QF during both fatiguing tasks was approximately the same in both athletic populations. This was indicated by minor group differences in endurance time, postexercise MVC production, and electromyography (EMG)-estimated muscle activation during fatigue. Variability in endurance time was not significantly associated with pre-exercise force-generating capacities in these competitive athletes. In both athletic populations, recovery of MVC was significantly slower after the fatiguing contraction with 20% of MVC compared with that with 40% of MVC. These results may enhance understanding of plasticity of the neuromuscular system and yield interesting information for the optimization of athletic training programs. Explosive strength training might enhance endurance athletes' explosiveness without decreasing muscle fatigue resistance. The exercise profile of competitive tennis is suggested to act as a sufficient trigger to reach high neuromuscular fatigue resistance but may be inadequate to cause significant gains in absolute muscle strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号