首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   10篇
  2022年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   7篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
G Schwoch  A Freimann 《FEBS letters》1986,197(1-2):143-148
To quantify the cAMP-dependent protein kinases I and II in parotid gland nuclei independent of the enzyme activity, monospecific antisera against their subunits were applied in a sensitive enzyme immunoassay. About 3% of total catalytic subunit in the homogenate was found in the isolated nuclei. During beta-agonist-induced proliferation of the parotid gland the nuclear concentration of catalytic and regulatory subunits changed. Related to the number of nuclei, the catalytic subunit and the regulatory subunit RI increased about 3-fold whereas the regulatory subunit RII remained unchanged.  相似文献   
2.
An immunocolloidal gold electron microscopy method is described allowing the ultrastructural localization and quantitation of the regulatory subunits RI and RII and the catalytic subunit C of cAMP-dependent protein kinase. Using a postembedding indirect immunogold labeling procedure that employs specific antisera, the catalytic and regulatory subunits were localized in electron-dense regions of the nucleus and in cytoplasmic areas with a minimum of nonspecific staining. Antigenic domains were localized in regions of the heterochromatin, nucleolus, interchromatin granules, and in the endoplasmic reticulum of different cell types, such as rat hepatocytes, ovarian granulosa cells, and spermatogonia, as well as cultured H4IIE hepatoma cells. Morphometric quantitation of the relative staining density of nuclear antigens indicated a marked modulation of the number of subunits per unit area under various physiologic conditions. For instance, following partial hepatectomy in rats, the staining density of the nuclear RI and C subunits was markedly increased 16 h after surgery. Glucagon treatment of rats increased the staining density of only the nuclear catalytic subunit. Dibutyryl cAMP treatment of H4IIE hepatoma cells led to a marked increase in the nuclear staining density of all three subunits of cAMP-dependent protein kinase. These studies demonstrate that specific antisera against cAMP-dependent protein kinase subunits may be used in combination with immunogold electron microscopy to identify the ultrastructural location of the subunits and to provide a semi-quantitative estimate of their relative cellular density.  相似文献   
3.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   
4.
Observation and quantification of the catalytic subunit C of cyclic AMP-dependent protein kinases by immuno-gold electron microscopy suggested a high concentration of cyclic AMP-dependent protein kinases in mitochondria from liver, kidney, heart and skeletal muscle, pancreas, parotid gland and brain cells. The position of gold particles pointed to a localization in the inner membrane/matrix space. A similar distribution was obtained by immunolocalization of the cyclic AMP-dependent protein kinase regulatory subunits RI and RII in liver, pancreas and heart cells. The results indicated the presence of both the type I and the type II cyclic AMP-dependent protein kinases in mitochondria of hepatocytes, and the preferential occurrence of the type I protein kinase in mitochondria from exocrine pancreas and heart muscle. The immunocytochemical results were confirmed by immunochemical determination of cyclic AMP-dependent protein kinase subunits in fractionated tissues. Determinations by e.l.i.s.a. of the C-subunit in parotid gland cell fractions indicated about a 4-fold higher concentration of C-subunit in the mitochondria than in a crude 1200 g supernatant. Immunoblot analysis of subfractions from liver mitochondria supported the localization in situ of cyclic AMP-dependent protein kinases in the inner membrane/matrix space and suggested that the type I enzyme is anchored by its regulatory subunit to the inner membrane. In accordance with the immunoblot data, the specific activity of cyclic AMP-dependent protein kinase measured in the matrix fraction was about twice that measured in whole mitochondria. These findings indicate the importance of cyclic AMP-dependent protein kinases in the regulation of mitochondrial functions.  相似文献   
5.
Primary cultured neurons were fractionated using sucrose density gradients. The activities of four sialyltransferases (GM3, GD3, GD1a, and GT1a synthase) involved in ganglioside biosynthesis were assayed in the collected fractions. The distribution of GM3 synthase coincided with that of mannosidase II, an enzyme assumed to be a cis-Golgi marker. Both enzymes were mainly associated with the more dense fraction. GD1a and GT1a synthase activities, on the other hand, were mainly recovered in the less dense fraction. Moreover, they were colocalized with thiamine pyrophosphatase, an enzyme assumed to be a marker of the late Golgi (trans-Golgi and trans-Golgi network). GD3 synthase activity was equally distributed between both fractions. These results are integrated in a model of ganglioside biosynthesis.  相似文献   
6.
We studied the metabolism of radioactively labeled safingol (l-threo-dihydrosphingosine) in primary cultured neurons, B104 neuroblastoma cells, and Swiss 3T3 fibroblasts, and compared it to that of its natural stereoisomer d-erythro-dihydrosphingosine. Both sphingoid bases are used as biosynthetic precursors for complex sphingolipids, albeit to different rates. Whereas a considerable amount of the natural sphingoid base is also directed to the catabolic pathway (20-66%, cell type dependent), only a minor amount of the nonnatural safingol is subjected to catabolic cleavage, most of it being N-acylated to the respective stereochemical variant of dihydroceramide. Interestingly, N-acylation of safingol to l-threo-dihydroceramide is less sensitive to fumonisin B1 than the formation of the natural d-erythro-dihydroceramide. In addition, safingol-derived l-threo-dihydroceramide, unlike its physiologic counterpart, is not desaturated. Most of it either accumulates in the cells (up to 50%) or is used as a biosynthetic precursor of the respective dihydrosphingomyelin (up to 45%). About 5% is, however, glucosylated and channeled into the glycosphingolipid biosynthetic pathway. Our results demonstrate that, despite its nonnatural stereochemistry, safingol is recognized and metabolized preferentially by enzymes of the sphingolipid biosynthetic pathway. Furthermore, our data suggest that the cytotoxic potential of safingol is reduced rather than enhanced via its metabolic conversion.  相似文献   
7.
Thiazolidinediones acting as PPAR-gamma agonists are a new generation of oral antidiabetics addressing insulin resistance as a main feature of type-2 diabetes. In accordance to our results, pre-clinical studies have demonstrated that the thiazolinedione troglitazone prevents the development of insulin-dependent autoimmune type-1 diabetes. To investigate whether TGZ acts by affecting the ICAM-1/LFA-1 pathway and/or the Th1/Th2 cytokine balance in NOD mice, we analysed the IL-1beta-induced ICAM-1 expression on islet-cells and the LFA-1, CD25, IL-2, IFN-gamma, IL-4, and IL-10 expression on splenocytes. After 200 days of oral TGZ administration, islet cells from TGZ-treated NOD mice showed a reduced ICAM-1 expression in response to the pro-inflammatory cytokine IL-1beta. The expression of the ligand LFA-1 on CD4(+) and CD8(+) T-cells was comparable to that of placebo- and untreated controls. Also, the expression of Th1/Th2 cytokines was comparable in groups receiving TGZ or Placebo. Nevertheless, the investigated NOD mice segregated into IFN-gamma low- and IFN-gamma high producers as revealed by cluster analysis. Interestingly, the majority of TGZ-treated mice belonged to the cluster of IFN-gamma low producers. Thus, the prevention of autoimmune diabetes in NOD mice by TGZ seems to be associated with suppression of IL-1beta-induced ICAM-1 expression leading to a reduced vulnerability of pancreatic beta-cells during the effector stage of beta-cell destruction. In addition, IFN-gamma production was modulated, implicating that alteration of the Th1/Th2 cytokine balance might have contributed to diabetes prevention. The findings of this study suggest that TGZ exerts its effects by influencing both the beta-cells as the target of autoimmune beta-cell destruction and the T-cells as major effectors of the autoimmune process.  相似文献   
8.
During mammalian embryogenesis the emerging epidermis is temporarily covered by an epithelial monolayer, the periderm. In chicken, a second epithelial layer, the subperiderm, located underneath the periderm develops in later embryogenesis. Together the periderm and the subperiderm are referred to as the PSP unit. The cells of the PSP unit are tightly connected by tight junctions (TJ), thereby providing the embryo with an impermeable bilayered diffusion barrier. The emerging epidermis assumes its barrier function by cornification beginning at embryonic day 17 (E17) before at E18 the PSP unit undergoes desquamation. Lipid analysis of both epithelia after their mechanical separation revealed a dramatic increase to about 100-fold values of barrier-relevant ceramides, i.e. those known to essentially contribute to the diffusion barrier of the cornified envelope, in the emerging epidermis between E17 and E19. In contrast, the content of barrier-relevant ceramides in the PSP unit remained at constantly low levels throughout embryogenesis. These data strongly argue in favour of different mechanisms for the barrier function of the two epithelia. TJ in the PSP unit provide the main diffusion barrier protecting the embryo until beginning of desquamation at E18. At this developmental stage the content of cornified envelope-specific ceramides is substantially elevated, thus enabling the epidermis to fulfil its function as the major diffusion barrier after desquamation of the PSP unit. The observation that barrier-relevant ceramides are formed prior to desquamation of the PSP unit points to a precisely regulated sequence in that desquamation does not occur until the lipid-based barrier of the cornified envelope is completed and suggests in addition that these lipids might be essential regulators of the interaction between the PSP unit and the emerging epidermis.  相似文献   
9.
Leukocyte recruitment from the blood into injured tissues during inflammatory diseases is the result of sequential events involving chemokines binding to their GPC receptors as well as to their glycosaminoglycan (GAG) co-receptors. The induction and the crucial role of MCP-1/CCL2 in the course of diseases that feature monocyte-rich infiltrates have been validated in many animal models, and several MCP-1/CCL2 as well as CCR2 antagonists have since been generated. However, despite some of them being shown to be efficacious in a number of animal models, many failed in clinical trials, and therapeutically interfering with the activity of this chemokine is not yet possible. We have therefore generated novel MCP-1/CCL2 mutants with increased GAG binding affinity and knocked out CCR2 activity, which were designed to interrupt the MCP-1/CCL2-related signaling cascade. We provide evidence that our lead mutant MCP-1(Y13A/S21K/Q23R) exhibits a 4-fold higher affinity toward the natural MCP-1 GAG ligand heparan sulfate and that it shows a complete deficiency in activating CCR2 on THP-1 cells. Furthermore, a significantly longer residual time on GAG ligands was observed by surface plasmon resonance. Finally, we were able to show that MCP-1(Y13A/S21K/Q23R) had a mild ameliorating effect on experimental autoimmune uveitis and that a marginal effect on oral tolerance in the group co-fed with Met-MCP-1(Y13A/S21K/Q23R) plus immunogenic peptide PDSAg was observed. These results suggest that disrupting wild type chemokine-GAG interactions by a chemokine-based antagonist can result in anti-inflammatory activity that could have potential therapeutic implications.  相似文献   
10.
Fluorescently labeled type-3 copper proteins have been proposed previously as solution oxygen sensors by using a FRET mechanism. Herein, we describe how this principle can be adapted to sense O2 by means of proteins immobilized in optically transparent silica matrices. Specifically, the protein, hemocyanin from Octopus vulgaris N-terminally labeled with Cy5, is immobilized in two different kinds of optically transparent silica matrices, which appear to be a promising platform for enzyme encapsulation. The presented results provide proof of principle that fluorescently labeled proteins immobilized in a silica matrix can be implemented in a reusable, biocompatible and stable oxygen measuring device that might lead to new developments in the field of optical biosensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号