首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1996年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Compounds that contain an alpha,beta-unsaturated carbonyl moiety are often flagged as potential Michael acceptors. All alpha,beta-unsaturated carbonyl moieties are not equivalent, however, and we sought to better understand this system and its potential implications in drug-like molecules. Measurement of the (13)C NMR shift of the beta-carbon and correlation to in vitro results allowed compounds in our collection to be categorized as potential Michael acceptors, potential substrates for NADPH, or as photoisomerizable.  相似文献   
2.
The susceptible degradation sites of therapeutic proteins are routinely assessed under accelerated conditions such as exposure to chemicals or incubation at elevated temperature or a combination of both. A fully human monoclonal IgG(1) antibody was characterized after incubation at 40 degrees C for 6 months by employing mass spectrometry and chromatography analyses. It was found that deamidation, fragmentation and N-terminal glutamate cyclization to form pyroglutamate are the major degradation pathways. Three major deamidation sites were identified and one site in a small tryptic peptide accounted for more than 80% of the total. Peptide cleavage was observed at several positions between different pairs of amino acids. Most of the cleavage sites were located in the hinge or other flexible regions of the IgG molecule.  相似文献   
3.
Methionine (Met) oxidation is a major degradation pathway of protein therapeutics. Met oxidation of a fully human recombinant monoclonal antibody was investigated under both chemically stressed conditions using tert-butylhydroperoxide (tBHP) and thermal stability conditions where the sample was incubated in formulation buffer at 25 degrees C for 12 months. This antibody has one Met residue on each of the light chains and four Met residues on each of the heavy chains. In the thermal stability sample, only Met residues 256 and 432 in the Fc region were oxidized to form methionine sulfoxide, while Met residues in the Fab region were relatively stable. The susceptibility of Met residues 256 and 432 was further confirmed by incubating samples with tBHP, which has been shown to induce Met oxidation. Further analysis revealed that the susceptible Met residues of each heavy chain were randomly oxidized in samples incubated with tBHP, while in the thermal stability sample, the susceptible Met residues of one heavy chain were preferentially oxidized.  相似文献   
4.
Mouse uterine epithelium is a tissue that undergoes cyclic endocrine-regulated cell dissociation and regeneration. It shows a dramatic cell loss following normal estrus. If pregnancy ensues, cell loss is averted during the first 2.5–3.5 days. However, this is followed by a precipitous loss of basal-lateral cell adhesion and apoptosis in preparation for blastocyst invasion. By comparing epithelia isolated by protease treatment, we show that a reduction of lateral cell adhesion is a primary event in these instances of normal tissue loss. It was readily induced in ovariectomized adult and immature mice by injections of estradiol (E2), and to some extent also by progesterone (P4). The reduction of lateral adhesion induced by including ethylene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) in the isolation medium mimicked and was additive to the effect of E2 injection. However, the E2 effect was different in not being prevented by adding Ca2+. The E2 effect also was mimicked by the action on isolated epithelium of monoclonal antibody against the calcium-dependent cell adhesion molecule, E-cadherin, suggesting that inactivation of E-cadherin was induced by E2. In detergent extracts of estrous and metestrous epithelium there was an increase in 80-kDa extracellular domain of E-cadherin relative to the intact 120-kDa molecule. The loss of adhesion between 3.5 and 4.5 days of pregnancy was associated with a loss of both intact membrane-associated 120-kDa E-cadherin and cleavage products. Cleavage of 80-kDa E-cadherin was uniquely induced by E2 in ovariectomized adult and immature mice; P4 was without effect. The cleavage of E-cadherin correlated with increased basal accumulation of E-cadherin antigen in estrous and E2-injected mice and a loss of both basal and lateral antigen at 4.5 days of pregnancy. Only the E-cadherin antigen within junctional complexes appeared unaffected. The data are consistent with the hypothesis that the cyclic and pregnancy-dependent disruption of uterine epithelial integrity are promoted by E2-dependent modification of E-cadherin, including its extracellular cleavage. © 1996 Wiley-Liss, Inc.  相似文献   
5.
Antibody fragmentation in the hinge region and other regions, and the impact of pH on the level and pattern of antibody fragmentation were investigated by reversed-phase (RP) liquid chromatography and mass spectrometry (LC-MS). Extensive fragmentation was observed in the hinge and in regions other than the hinge of a recombinant monoclonal antibody that was incubated in buffers of various pH at 40 degrees C for 10 weeks. Peptide bonds that were susceptible to hydrolysis were located mainly around the domain-domain interfaces close to or in the loop structures. The sites as well as the level of peptide bond hydrolysis were affected by the buffer pH. In agreement with previous findings when only the hinge region fragmentation was monitored, pH 6 was optimal for slowing down antibody fragmentation in regions other than the hinge. It also demonstrated that analysis by RPLC-MS provided a better assessment of the susceptible regions of recombinant monoclonal antibodies than size-exclusion chromatography (SEC) followed by fraction collection and mass spectrometry identification.  相似文献   
6.
Heparan sulfate proteoglycans (HSPGs) and dermatan sulfate/chondroitin sulfate proteoglycans may be extracted from the uterine epithelium of immature mice by a 1-min exposure of the luminal surface of excised uteri to 1% Nonidet P-40 detergent. In mice that are treated with estradiol there is a marked increase in free heparan sulfate glycosaminoglycan in the extract. (a) By Sepharose exclusion chromatography the [35S]sulfate-labeled major HSPG had a nominal Mr of 200-250 X 10(3), consisting of a core protein of about 80-90 X 10(3) Mr with about 8-10 heparan sulfate glycosaminoglycan chains (Mr = 13 X 10(3)). The HSPG had a lower bouyant density (less than 1.45 g/ml) than the dermatan sulfate/chondroitin sulfate proteoglycan and was heterogeneous, as was evident in the fact that HSPG attained equilibrium over a wide range of CsCl densities and also showed nonuniform interaction with octyl-Sepharose. (b) Virtually all of the major HSPG was removed when the epithelium was isolated by proteolysis, indicating a cell surface localization. A smaller, less prominent HSPG (nominal Mr = 80 X 10(3)) was synthesized during the first 2 h after isolation. (c) Label and chase experiments with and without chloroquine showed that virtually all of the free heparan sulfate glycosaminoglycan chains derived from endocytosis and lysosomal degradation of the plasma membrane-associated HSPG. We conclude that estradiol stimulates endocytosis of HSPG, predominantly from the basolateral epithelial surface and suggest that this HSPG turnover may reflect changes associated with blastocyst attachment and invasion of the endometrium.  相似文献   
7.
Recombinant monoclonal antibody heterogeneity is inherent due to various enzymatic and non-enzymatic modifications. In this study, a recombinant humanized monoclonal IgG1 antibody with different states of glycosylation on the conserved asparagine residue in the CH(2) domain was analyzed by weak cation exchange chromatography. Two major peaks were observed and were further characterized by enzymatic digestion and mass spectrometry. It was found that this recombinant monoclonal antibody contained three glycosylation states of antibody with zero, one or two glycosylated heavy chains. The peak that eluted earlier on the cation exchange column contained antibodies with two glycosylated heavy chains containing fucosylated biantennary complex oligosaccharides with zero, one or two terminal galactose residues. The peak that eluted later from the column contained antibodies with either zero, one or two glycosylated heavy chains. The oligosaccharide on the antibodies eluted in the later peak was composed of only two GlcNAc residues. These results indicate that conformational changes in large proteins such as monoclonal antibodies, caused by different types of neutral oligosaccharides as well as the absence of oligosaccharides, can be differentiated by cation exchange column chromatography.  相似文献   
8.
Summary The basal lamina of differentiated epithelium normally turns over only slowly unless stimulated by tissue repair and growth. We show here that one mechanism of this stimulation, as modeled by basal lamina proteoglycan synthesis, may be the release of basal lamina-bound transforming growth factor (TGF-β). A large heparan sulfate proteoglycan (HSPG, 0.2K av on Sepharose CL-4B) that was extractable from mouse uterine epithelium with 4M guanidine-HCl or 1M KCl was recognized by a specific monoclonal antibody to the basal lamina HSPG, perlecan. This HSPG was metabolically inactive with respect to [35S]-sulfate labeling in pieces of whole uterus during 4 h of culture, but it was labeled in isolated cells under the same conditions, provided that the cells had been cultured at least 6 to 12 h before labeling. The rate of labeling was then constant during at least 4 days in culture in serum-containing medium. Cultures on Matrigel showed an enhanced [35S]-sulfate labeling specifically in the 0.2K av HSPG fraction. Partial stimulation was obtained with a serum-free medium extract of Matrigel, which fractionated on Sephadex G-50 in two components; a major one >30 kDa and the other at about 15 to 25 kDa. The specific stimulation was mimicked by the addition of 10 ng/ml of TGF-β1, but there was no specific stimulation by basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), insulinlike growth factor-1 (IGF-1), or interleukin-1 (IL-1). TGF-β1 was identified as a 12.5 kDa monomer in thiol-reduced Matrigel and Matrigel extracts by polyclonal blocking antibodies on transblots following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Failure of excess amounts of these antibodies to block Matrigel-stimulated basal lamina HSPG synthesis indicates that TGF-β1 may be only one component of Matrigel that is important in stimulating basal lamina HSPG synthesis in culture. We suggest that in vivo TGF-β1 is bound to macromolecular components of mouse uterine epithelial basal lamina, where it may be sequestered until microenvironmental changes make it available to promote basal lamina HSPG synthesis.  相似文献   
9.
SDS-PAGE under non-reducing conditions is one of the most commonly used techniques for recombinant monoclonal antibody purity and stability indicating assay. On non-reducing SDS-PAGE, bands with a lower molecular weight than the intact antibody are routinely observed and is a common feature of IgG molecules. These fragments were analyzed by in-gel digestion followed by matrix-assisted-laser-desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry, Western blot and by comparing the banding pattern of sample prepared in the presence of a reducing reagent. The fragments bands were identified as antibody lacking one light chain, two heavy chains, one light chain and one heavy chain, free heavy chain and free light chain. Sensitivity of fragmentation to sample buffer pH, incubation time, reducing reagent and alkylation reagents indicated that fragments were formed during sample preparation, but not present in the samples analyzed. Disulfide bond scrambling and β-elimination are the two major mechanisms of the formation antibody fragments. Mass spectrometry analysis suggested that disulfide bond scrambling can be prevented by specifically modifying free sulhydryl using alkylation and thus reduced the amount of artifacts on non-reducing SDS-PAGE. Breakage of disulfide bonds by β-elimination was evidenced by the detection of dehydroalanine using mass spectrometry.  相似文献   
10.
Oxidation of methionine (Met) residues is one of the most common protein degradation pathways. Two Met residues, Met256 and Met432, of a recombinant fully human monoclonal IgG1 antibody have been shown to be susceptible to oxidation. Met256 and Met432 are located in the antibody CH2-CH3 interface and in close proximity to protein A and protein G binding sites. The effect of oxidation of these susceptible Met residues on the binding to protein A and protein G was investigated in the current study. Incubation of the antibody with 5% tert-butyl hydroperoxide (tBHP) resulted in a nearly complete oxidation of Met256 and Met432, while incubation with 1% tBHP resulted in mixed populations of the antibody with different degrees of Met oxidation. Oxidation of Met256 and Met432 resulted in earlier elution of the antibody from protein A and protein G columns when eluted with a gradient of decreasing pH. Analysis by ELISA and surface plasmon resonance (SPR) revealed decreased binding affinity of the oxidized antibody to protein A and protein G. It is therefore concluded that oxidation of the Met256 and Met432 residues of the recombinant monoclonal antibody altered its interaction with protein A and protein G resulting in a decrease in binding affinity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号