首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2013年   3篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2000年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1977年   3篇
排序方式: 共有52条查询结果,搜索用时 171 毫秒
1.
Russian Journal of Bioorganic Chemistry - Streptococcus pneumoniae is a Gram-positive bacterium (pneumococcus) that causes severe diseases in adults and children. It was established that some...  相似文献   
2.
Bivalent metal cations are key components in the reaction of DNA synthesis. They are necessary for all DNA polymerases, being involved as cofactors in catalytic mechanisms of nucleotide polymerization. It is also known that in the presence of Mn2+ the accuracy of DNA synthesis is considerably decreased. The findings of this work show that Cd2+ and Zn2+ selectively inhibit the Mn2+-induced error-prone DNA polymerase activity in extracts of cells from human and mouse tissues. Moreover, these cations in low concentrations also can efficiently inhibit the activity of homogeneous preparations of DNA polymerase iota (Pol ?), which is mainly responsible for the Mn2+-induced error-prone DNA polymerase activity in cell extracts. Using a primary culture of granular cells from postnatal rat cerebellum, we show that low concentrations of Cd2+ significantly increase cell survival in the presence of toxic Mn2+ doses. Thus, we have shown that in some cases low concentrations of Cd2+ can display a positive influence on cells, whereas it is widely acknowledged that this metal is not a necessary microelement and is toxic for organisms.  相似文献   
3.
4.
Human DNA-polymerase iota (Pol ι) is an extremely error-prone enzyme and the fidelity depends on the sequence context of the template. Using the in vitro systematic evolution of ligands by exponential enrichment (SELEX) procedure, we obtained an oligoribonucleotide with a high affinity to human Pol ι, named aptamer IKL5. We determined its dissociation constant with homogenous preparation of Pol ι and predicted its putative secondary structure. The aptamer IKL5 specifically inhibits DNA-polymerase activity of the purified enzyme Pol ι, but did not inhibit the DNA-polymerase activities of human DNA polymerases beta and kappa. IKL5 suppressed the error-prone DNA-polymerase activity of Pol ι also in cellular extracts of the tumor cell line SKOV-3. The aptamer IKL5 is useful for studies of the biological role of Pol ι and as a potential drug to suppress the increase of the activity of this enzyme in malignant cells.  相似文献   
5.
Hemorrhagic shock (HS) often renders patients more susceptible to lung injury by priming for an exaggerated response to a second infectious stimulus. Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome following HS and regularly serves as a major cause of patient mortality. The lung vascular endothelium is an active organ that has a central role in the development of ALI through synthesizing and releasing of a number of inflammatory mediators. Cell pyroptosis is a caspase-1-dependent regulated cell death, which features rapid plasma membrane rupture and release of proinflammatory intracellular contents. In this study, we demonstrated an important role of HS in priming for LPS-induced lung endothelial cell (EC) pyroptosis. We showed that LPS through TLR4 activates Nlrp3 (NACHT, LRR, and PYD domains containing protein 3) inflammasome in mouse lung vascular EC, and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for post-HS ALI.Hemorrhagic shock (HS) often renders patients more susceptible to a secondary stimulus (e.g., infection) resulting in the development of systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS) by activating and priming the inflammatory process. The underlying mechanism of how HS leads to SIRS and MODS has yet to be fully determined. Acute lung injury (ALI) is a major component of MODS and often serves as a direct cause of patient mortality.1, 2 The lung vascular endothelium is an active organ that critically contributes to the pathogenesis of ALI following trauma, sepsis, and shock by affecting pulmonary and systemic homeostasis, including secretion of cytokines, chemokines, and adhesion molecules.3, 4 There is a significant gap in our knowledge concerning the mechanisms of HS regulation of lung endothelial cell (EC) activation and death, and subsequent promotion of lung inflammation.Pyroptosis is a caspase-1-dependent form of regulated cell death that is stimulated by a range of microbial infections and non-infectious stimuli.5, 6 Morphologically, pyroptosis is characterized by plasma membrane rupture, which results in the release of intracellular contents,7, 8, 9, 10, 11 and cleavage of chromosomal DNA.7, 11, 12, 13, 14The magnitude of caspase-1 activation is important for the fate of cells. Low level of activation of caspase-1 might be necessary for cell survival in response to external stimulations.15 However, over-activation of caspase-1 may serve as a premise for cell pyroptosis.5, 6 The platform for caspase-1 activation includes inflammasome and pyroptosome. The former comprises of NOD-like receptors (NLRs) or AIM2 receptor, caspase-1, and apoptosis-associated speck-like protein containing a CARD domain (ASC); and the latter is composed of oligomerized ASC dimers.16 We have previously reported that HMGB1 has a critical role in activation of inflammasome and pyroptosome in macrophages in a setting of HS.17, 18In this study, we demonstrated an important role of HS in priming for LPS-induced lung EC pyroptosis. We showed that LPS through TLR4 activates Nlrp3 inflammasome in mouse lung vascular EC (MLVEC), and subsequently induces caspase-1 activation. However, HS induced release of high-mobility group box 1 (HMGB1), which acting through the receptor for advanced glycation end products (RAGE) initiates EC endocytosis of HMGB1, and subsequently triggers a cascade of molecular events, including cathepsin B (CatB) release from ruptured lysosomes followed by pyroptosome formation and caspase-1 activation. These HS-induced events enhance LPS-induced EC pyroptosis. We further showed that lung vascular EC pyroptosis significantly exaggerates lung inflammation and injury. The present study explores a novel mechanism underlying HS-primed ALI and thus presents a potential therapeutic target for ALI induced after HS.  相似文献   
6.
The repeated sequences situated in 5'- and 3'-flanking regions of the bovine growth hormone gene were cloned and characterized. It was shown that they are related to a described before PstI-family of bovine repeats with a frequency of repetition about 10(5). PstI-repeats are found only in genomes of sheep and goats subfamily (Carpinae) and not found in DNA of other analysed vertebrate species. Repeats of this family are situated in the genome as a number of dispersed clusters, they have conservative structure and are alike by the frequency of repetition in the DNA of all organisms that contain them. The presence of sequences homologous to PstI-repeats are shown in bovine pituitary poly(A)+ cytoplasmic RNA by means of North-hybridization.  相似文献   
7.
DNA polymerase β (polβ), a member of the X family of DNA polymerases, is the major polymerase in the base excision repair pathway. Using in vitro selection, we obtained RNA aptamers for polβ from a variable pool of 8 × 1012 individual RNA sequences containing 30 random nucleotides. A total of 60 individual clones selected after seven rounds were screened for the ability to inhibit polβ activity. All of the inhibitory aptamers analyzed have a predicted tri-lobed structure. Gel mobility shift assays demonstrate that the aptamers can displace the DNA substrate from the polβ active site. Inhibition by the aptamers is not polymerase specific; inhibitors of polβ also inhibited DNA polymerase κ, a Y-family DNA polymerase. However, the RNA aptamers did not inhibit the Klenow fragment of DNA polymerase I and only had a minor effect on RB69 DNA polymerase activity. Polβ and κ, despite sharing little sequence similarity and belonging to different DNA polymerase families, have similarly open active sites and relatively few interactions with their DNA substrates. This may allow the aptamers to bind and inhibit polymerase activity. RNA aptamers with inhibitory properties may be useful in modulating DNA polymerase actvity in cells.  相似文献   
8.
DNA polymerase iota (Pol iota) of mammals is a member of the Y family of DNA polymerases. Among many other genome caretakers, these enzymes are responsible for maintaining genome stability. The members of the Y-family DNA polymerases take part in translesion DNA synthesis, bypassing some DNA lesions, and are characterized by low fidelity of DNA synthesis. A unique ability of Pol iota to predominantly incorporate G opposite T allowed us to identify the product of this enzyme among those synthesized by other DNA polymerases. This product can be called a "false note" of Pol iota. We measured the enzyme activity of Pol iota in crude extracts of cells from different organs of five inbred strains of mice (N3H/Sn, 101/H, C57BL/6, BALB/c, 129/J) that differed in a number of parameters. The "false note" of Pol iota was clearly sounding only in the extracts of testis and brain cells from four analyzed strains: N3H/Sn, 101/H, C57BL/6, BALB/c. In mice of 129/J strain that had a nonsense mutation in the second exon of the pol iota gene, the Pol iota activity was reliably detectable only in the extracts of brain. The data show that the active enzyme can be formed in some cell types even if they carry a nonsense mutation in the pol iota gene. This supports tissue-specific regulation of pol iota gene expression through alternative splicing. A semiquantitative determination of pol iota activity in mice strains different in their radiosensitivity suggests a reciprocal correlation between the enzyme activity of pol iota in testis and the resistance of mice to radiation.  相似文献   
9.
10.
This review describes the properties of some specialized DNA polymerases participating in translesion synthesis of DNA. Special attention is given to these properties in vivo. DNA polymerase iota (Polι) of mammals has very unusual features and is extremely error-prone. Based on available data, a hypothesis is proposed explaining how mammalian cells can explore the unusual features of DNA Polι to bypass DNA damages and to simultaneously prevent its mutagenic potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号