首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   3篇
  33篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1989年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.

Background

The adaptive response of bone cells to mechanical strain is a primary determinant of skeletal architecture and bone mass. In vivo mechanical loading induces new bone formation and increases bone mineral density whereas disuse, immobilisation and weightlessness induce bone loss. The potency of mechanical strain is such that a single brief period of loading at physiological strain magnitude is able to induce a long-lasting osteogenic response that lasts for days. Although the process of mechanotransduction in bone is incompletely understood, observations that responses to mechanical strain outlast the duration of stimulation necessitate the existence of a form of cellular memory through which transient strain episodes are recorded, interpreted and remembered by bone cells. Recent evidence supports the existence of a complex multicellular glutamate-signalling network in bone that shares functional similarities to glutamatergic neurotransmission in the central nervous system. In neurones, these signalling molecules coordinate synaptic communication required to support learning and memory formation, through a complex process of long-term potentiation.

Presentation of the hypothesis

We hypothesise that osteoblasts use a cellular mechanism similar or identical to neuronal long-term potentiation in the central nervous system to mediate long-lasting changes in osteogenesis following brief periods of mechanical strain.

Testing the hypothesis

N-methyl-D-aspartate (NMDA) receptor antagonism should inhibit the saturating response of mechanical strain and reduce the enhanced osteogenicity of segregated loading to that of an equivalent period of uninterrupted loading. Changes in α-amino-3-hydroxy-5-methyl-isoxazole propionate (AMPA) receptor expression, localisation and electrophysiological responses should be induced by mechanical strain and inhibited by modulators of neuronal long-term potentiation.

Implications of the hypothesis

If true, this hypothesis would provide a mechanism through which the skeleton could be pharmacologically primed to enhance or retrieve the normal osteogenic response to exercise. This would form a basis through which novel therapies could be developed to target osteoporosis and other prevalent bone disorders associated with low bone mass.
  相似文献   
2.
3.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
4.
Saleh FA  Genever PG 《Cytotherapy》2011,13(8):903-912
Mesenchymal stromal cells (MSC) can be isolated from adult tissues and induced to differentiate into skeletal cells, such as osteoblasts, chondrocytes and adipocytes. Consequently, ex vivo MSC are valuable systems for studying the mechanisms that control tissue-context lineage commitment and may offer broad therapeutic applications in the orthopedic theater and beyond. To date, most of these studies have used MSC grown on two-dimensional (2-D) plastic surfaces. The use of three-dimensional (3-D) in vitro growth techniques for MSC may accelerate these areas of research by providing a more representative 'in vivo-like' environment, where cells interact with each other and their cellular products, rather than a plastic surface. We introduce some of the techniques used for 3-D in vitro cultures and how they relate to the MSC field. We will present evidence of how MSC grown as 3-D spheroids not only permits appropriate MSC-like behavior, but appears to promote their stem-cell attributes and therapeutic benefit in applications ranging from regenerative medicine to anti-inflammatory treatments and cancer therapy. 3-D culture techniques also allow de/reconstruction of the specialized in vivo niche of the tissue-resident stem cell where microenvironmental influences can be recognized.  相似文献   
5.
After an initial phase of growth and development, bone undergoes a continuous cycle of repair, renewal and optimisation by a process called remodelling. This paper describes a novel mathematical model of the trabecular bone remodelling cycle. It is essentially formulated to simulate a remodelling event at a fixed position in the bone, integrating bone removal by osteoclasts and formation by osteoblasts. The model is developed to construct the variation in bone thickness at a particular point during the remodelling event, derived from standard bone histomorphometric analyses. The novelties of the approach are the adoption of a predator-prey model to describe the dynamic interaction between osteoclasts and osteoblasts, using a genetic algorithm-based solution; quantitative reconstruction of the bone remodelling cycle; and the introduction of a feedback mechanism in the bone formation activity to co-regulate bone thickness. The application of the model is first demonstrated by using experimental data recorded for normal (healthy) bone remodelling to predict the temporal variation in the number of osteoblasts and osteoclasts. The simulated histomorphometric data and remodelling cycle characteristics compare well with the specified input data. Sensitivity studies then reveal how variations in the model's parameters affect its output; it is hoped that these parameters can be linked to specific biochemical factors in the future. Two sample pathological conditions, hypothyroidism and primary hyperparathyroidism, are examined to demonstrate how the model could be applied more broadly, and, for the first time, the osteoblast and osteoclast populations are predicted for these conditions. Further data are required to fully validate the model's predictive capacity, but this work shows it has potential, especially in the modelling of pathological conditions and the optimisation of the treatment of those conditions.  相似文献   
6.
Best5: a novel interferon-inducible gene expressed during bone formation.   总被引:3,自引:0,他引:3  
Regulation of bone formation is important in the pathogenesis of many conditions such as osteoporosis, fracture healing, and loosening of orthopedic implants. We have recently identified a novel rat cDNA (best5) by differential display PCR that is regulated during osteoblast differentiation and bone formation in vitro and in vivo. Expression of best5 mRNA is induced in cultures of osteoblasts by both interferon-alpha (IFN-alpha) or IFN-gamma. Whereas IFN-alpha induced a rapid, transient induction of best5 expression peaking at 4-6 h poststimulation, IFN-gamma elicited a more prolonged induction of best5 expression, which remained elevated 48 h poststimulation. A polyclonal antibody generated to a peptide derived from the best5 coding region recognized a 27 kDa protein on Western blot analysis of osteoblast lysates. We localized BEST5 protein in osteoblast progenitor cells and mature osteoblasts in sections of rat tibiae and in sections of bones loaded in vivo to induce adaptive bone formation. Best5 may therefore be a fundamental intermediate in the response of osteoblasts to stimuli that modulate proliferation/differentiation, such as interferons or mechanical loading. These findings highlight the close interactions between the immune system and bone cells and may open new therapeutic avenues in modulating bone mass.  相似文献   
7.

Objective

Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS).

Methods

We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures.

Results

Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions.

Conclusion

Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process.  相似文献   
8.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号