首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2010年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Sequestration of Pb by synthetic chelates has been reported to increase bioavailability, uptake, and translocation of this metal in plants. In this work the potential phytotoxic effects of Pb-EDTA were investigated in Phaseolus vulgaris L. cv. Limburgse vroege plants grown on hydroponics. Addition of 50 µ M Pb-EDTA to the nutrient solution caused a significant induction of syringaldazine peroxidase (SPOD; EC 1.11.1.7) in roots and primary leaves and guaiacol peroxidase (GPOD; EC 1.11.1.7) in leaves. Addition of 100 µ M Pb-EDTA further exacerbated ascorbate peroxidase (APOD; EC 1.11.1.11), GPOD, dehydroascorbate reductase (DHAR; EC 1.8.5.1), glutathione reductase (GR; EC 1.6.4.2) and malic enzyme (ME; EC 1.1.1.40) in roots and APOD and ME in primary leaves. Addition of 200 µ M Pb-EDTA also induced DHAR in leaves. This induction of peroxidases (SPOD, GPOD, APOD), enzymes of the ascorbate-glutathione cycle (DHAR, GR in roots) and of an NADP+ reducing enzyme in roots and primary leaves indicates that oxidative stress has been initiated. At 200 µ M Pb-EDTA, chlorophyll a and b content in leaves was significantly reduced while visible effects on root morphology and shoot length were observed, while no significant morphological effects were found in the leaves, confirming the sensitive character of the measured enzymes as plant stress indicators. Elevation of the Pb-EDTA concentration in the growth medium significantly reduced the content of Ca, Fe, Mn and Zn taken up by plants, probably due to ion leakage as a result of observed toxicity. Addition of up to 200 µ M EDTA increased chelation of divalent cations in nutrient solution resulting in reduced plant uptake of Zn, Cu, Fe and Mn. This did not result in phytotoxicity.  相似文献   
2.
Geebelen  W.  Adriano  D.C.  van der Lelie  D.  Mench  M.  Carleer  R.  Clijsters  H.  Vangronsveld  J. 《Plant and Soil》2003,249(1):217-228
Lead immobilization in 10 soils contaminated with Pb from different origin was examined using lime (CaCO3), a mix of cyclonic ash and steelshots (CA+ST), and a North Carolina phosphate rock. The immobilization efficacy of the three amendments was evaluated using single (CaCl2solution) and sequential (BCR method) chemical extractions in tandem with a microbiological Pb biosensor (BIOMET), a Pb phytotoxicity test, Pb plant uptake, and a Physiologically Based Extraction Test (PBET) mimicking Pb bioavailability in the human gastro-intestinal tract. The results demonstrated the necessity of using a diverse suite of bioavailability methodology when in situ metal immobilization is assessed. Sequential (BCR) extractions and PBET analysis indicated that PR was the most effective amendment. PR however, proved ineffective in totally preventing Pb phytotoxicity and Pb uptake on all soils tested. On the contrary, CA+ST and lime decreased BIOMET Pb, Pb phytotoxicity, and Pb uptake to a far greater extent than did PR. BIOMET detectable Pb and Pb uptake, however, were strongly related to Pb in soluble or exchangeable soil fractions (i.e., CaCl2 extractable). By combining these fractions with the acid-extractable Pb, accomplished by using acetic acid extractant, the recently developed BCR sequential extraction scheme appeared to have lost some valuable information on judging Pb bioavailability. The data show that different amendments do not behave consistently across different soils with different sources of contamination. Different indices for measuring Pb bioavailability are also not necessarily consistent within particular soil and amendment combinations.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号