首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   8篇
  129篇
  2023年   4篇
  2021年   3篇
  2019年   6篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   5篇
  2014年   9篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有129条查询结果,搜索用时 0 毫秒
1.
Cyclin-dependent kinase subunit (CKS) proteins bind to cyclin-dependent kinases and target various proteins to phosphorylation and proteolysis during cell division. Crystal structures showed that CKS can exist both in a closed monomeric conformation when bound to the kinase and in an inactive C-terminal beta-strand-exchanged conformation. With the exception of the hinge loop, however, both crystal structures are identical, and no new protein interface is formed in the dimer. Protein engineering studies have pinpointed the crucial role of the proline 90 residue of the p13(suc1) CKS protein from Schizosaccharomyces pombe in the monomer-dimer equilibrium and have led to the concept of a loaded molecular spring of the beta-hinge motif. Mutation of this hinge proline into an alanine stabilizes the protein and prevents the occurrence of swapping. However, other mutations further away from the hinge as well as ligand binding can equally shift the equilibrium between monomer and dimer. To address the question of differential affinity through relief of the strain, here we compare the ligand binding of the monomeric form of wild-type S. pombe p13(suc1) and its hinge mutant P90A in solution by NMR spectroscopy. We indeed observed a 5-fold difference in affinity with the wild-type protein being the most strongly binding. Our structural study further indicates that both wild-type and the P90A mutant proteins adopt in solution the closed conformation but display different dynamic properties in the C-terminal beta-sheet involved in domain swapping and protein interactions.  相似文献   
2.
Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials.  相似文献   
3.
The fungal cell wall constitutes an important target for the development of antifungal drugs, because of its central role in morphogenesis, development and determination of fungal-specific molecular features. Fungal walls are characterized by a network of interconnected glycoproteins and polysaccharides, namely α-, β-glucans and chitin. Cell walls promptly and dynamically respond to environmental stimuli by a signaling mechanism, which triggers, among other responses, modulations in wall biosynthetic genes’ expression. Despite the absence of cellulose in the wall of the model filamentous fungus Aspergillus nidulans, we found in this study that fungal growth, spore germination and morphology are affected by the addition of the cellulose synthase inhibitor dichlobenil. Expression analysis of selected genes putatively involved in cell wall biosynthesis, carried out at different time points of drug exposure (i.e. 0, 1, 3, 6 and 24 h), revealed increased expression for the putative mixed linkage β-1,3;1,4 glucan synthase celA together with the β-1,3-glucan synthase fksA and the Rho-related GTPase rhoA. We also compared these data with the response to Congo Red, a known plant/fungal drug affecting both chitin and cellulose biosynthesis. The two drugs exerted different effects at the cell wall level, as shown by gene expression analysis and the ultrastructural features observed through atomic force microscopy and scanning electron microscopy. Although the concentration of dichlobenil required to affect growth of A. nidulans is approximately 10-fold higher than that required to inhibit plant cellulose biosynthesis, our work for the first time demonstrates that a cellulose biosynthesis inhibitor affects fungal growth, changes fungal morphology and expression of genes connected to fungal cell wall biosynthesis.  相似文献   
4.

Background

In this large observational study population of 105 myotonic dystrophy type 1 (DM1) patients, we investigate whether bodyweight is a contributor of total lung capacity (TLC) independent of the impaired inspiratory muscle strength.

Methods

Body composition was assessed using the combination of body mass index (BMI) and fat-free mass index. Pulmonary function tests and respiratory muscle strength measurements were performed on the same day. Patients were stratified into normal (BMI < 25 kg/m2) and overweight (BMI ≥ 25 kg/m2) groups. Multiple linear regression was used to find significant contributors for TLC.

Results

Overweight was present in 59% of patients, and body composition was abnormal in almost all patients. In overweight patients, TLC was significantly (p = 2.40×10−3) decreased, compared with normal-weight patients, while inspiratory muscle strength was similar in both groups. The decrease in TLC in overweight patients was mainly due to a decrease in expiratory reserve volume (ERV) further illustrated by a highly significant (p = 1.33×10−10) correlation between BMI and ERV. Multiple linear regression showed that TLC can be predicted using only BMI and the forced inspiratory volume in 1 second, as these were the only significant contributors.

Conclusions

This study shows that, in DM1 patients, overweight further reduces lung volumes, as does impaired inspiratory muscle strength. Additionally, body composition is abnormal in almost all DM1 patients.  相似文献   
5.
6.
Dietary intake of polyunsaturated fatty acids, including omega-3 and omega-6, could modulate chronic obstructive pulmonary disease (COPD) persistent inflammation. We aimed to assess the relationship between dietary intake of omega-3 and omega-6 fatty acids and serum inflammatory markers in COPD. A total of 250 clinically stable COPD patients were included. Dietary data of the last 2 years were assessed using a validated food frequency questionnaire (122 items), which provided levels of three omega-3 fatty acids: docosahexaenoic acid, eicosapentaenoic acid and α-linolenic acid (ALA); and two omega-6 fatty acids: linoleic acid and arachidonic acid (AA). Inflammatory markers [C-reactive protein (CRP), interleukin (IL)-6, IL-8 and tumor necrosis factor alpha (TNFα)] were measured in serum. Fatty acids and inflammatory markers were dichotomised according to their median values, and their association was assessed using multivariate logistic regression. Higher intake of ALA (an anti-inflammatory omega-3 fatty acid) was associated with lower TNFα concentrations [adjusted odds ratio (OR)=0.46; P=.049]. Higher AA intake (a proinflammatory omega-6 fatty acid) was related to higher IL-6 (OR=1.96; P=.034) and CRP (OR=1.95; P=.039) concentrations. Therefore, this study provides the first evidence of an association between dietary intake of omega-3 and omega-6 fatty acids and serum inflammatory markers in COPD patients.  相似文献   
7.
The ATP-binding cassette transporter GlnPQ is an essential uptake system that transports glutamine, glutamic acid and asparagine in Gram-positive bacteria. It features two extra-cytoplasmic substrate-binding domains (SBDs) that are linked in tandem to the transmembrane domain of the transporter. The two SBDs differ in their ligand specificities, binding affinities and their distance to the transmembrane domain. Here, we elucidate the effects of the tandem arrangement of the domains on the biochemical, biophysical and structural properties of the protein. For this, we determined the crystal structure of the ligand-free tandem SBD1-2 protein from Lactococcus lactis in the absence of the transporter and compared the tandem to the isolated SBDs. We also used isothermal titration calorimetry to determine the ligand-binding affinity of the SBDs and single-molecule Förster resonance energy transfer (smFRET) to relate ligand binding to conformational changes in each of the domains of the tandem. We show that substrate binding and conformational changes are not notably affected by the presence of the adjoining domain in the wild-type protein, and changes only occur when the linker between the domains is shortened. In a proof-of-concept experiment, we combine smFRET with protein-induced fluorescence enhancement (PIFE–FRET) and show that a decrease in SBD linker length is observed as a linear increase in donor-brightness for SBD2 while we can still monitor the conformational states (open/closed) of SBD1. These results demonstrate the feasibility of PIFE–FRET to monitor protein–protein interactions and conformational states simultaneously.  相似文献   
8.

Background

The predictive role of many cytokines has not been well defined in Acute Respiratory Distress Syndrome (ARDS).

Methods

We measured prospectively IL-4, IL-6, IL-6 receptor, IL-8, and IL-10, in the serum and bronchoalveolar lavage fluid (BALF) in 59 patients who were admitted to ICU in order to identify predictive factors for the course and outcome of ARDS. The patients were divided into three groups: those fulfilling the criteria for ARDS (n = 20, group A), those at risk for ARDS and developed ARDS within 48 hours (n = 12, group B), and those at risk for ARDS but never developed ARDS (n = 27, group C).

Results

An excellent negative predictive value for ARDS development was found for IL-6 in BALF and serum (100% and 95%, respectively). IL-8 in BALF and IL-8 and IL-10 serum levels were higher in non-survivors in all studied groups, and were associated with a high negative predictive value. A significant correlation was found between IL-8 and APACHE score (r = 0.60, p < 0.0001). Similarly, IL-6 and IL-6r were highly correlated with PaO2/FiO2 (r = -0.27, p < 0.05 and r = -0.55, p < 0.0001, respectively).

Conclusions

BALF and serum levels of the studied cytokines on admission may provide valuable information for ARDS development in patients at risk, and outcome in patients either in ARDS or in at risk for ARDS.  相似文献   
9.
Over the last two decades, the importance of conserving genetic resources has received increasing attention. In this context the role of home gardens as repositories of biological diversity has been acknowledged but still a comprehensive, interdisciplinary investigation of their agro-biodiversity is lacking. Home gardens, whether found in rural or urban areas, are characterized by a structural complexity and multifunctionality which enables the provision of different benefits to ecosystems and people. Studies carried out in various countries demonstrate that high levels of inter- and intra-specific plant genetic diversity, especially in terms of traditional crop varieties and landraces, are preserved in home gardens. Families engage in food production for subsistence or small-scale marketing and the variety of crops and wild plants provides nutritional benefits. At the same time, home gardens are important social and cultural spaces where knowledge related to agricultural practices is transmitted and through which households may improve their income and livelihoods. The present article summarizes available literature on the biological and cultural significance of agro-biodiversity in home gardens. It discusses future constraints and opportunities in home garden research, in the prospect of defining and promoting their role in conservation of agricultural biodiversity and cultural heritage.  相似文献   
10.
The fungicides chlorothalonil, metrafenone, prochloraz‐Mn, thiabendazole and thiophanate‐methyl were tested in vitro and in vivo for their effect on Cladobotryum mycophilum, the mycoparasite that causes cobweb disease in white button mushroom. In vitro experiments showed that metrafenone (EC50= 0.025 mg L?1) and prochloraz‐Mn (EC50= 0.045 mg L?1) were the most effective fungicides for inhibiting the mycelial growth of C. mycophilum. Selectivity indexes of the tested fungicides on both C. mycophilum and Agaricus bisporus indicated that metrafenone was also the most selective fungicide, while chlorothalonil was the most toxic fungicide against A. bisporus mycelium. The in vivo efficacy of fungicides for controlling cobweb was evaluated in three mushroom cropping trials, which were artificially inoculated with C. mycophilum (106 conidia m?2). Prochloraz‐Mn provided good control, although the surface colonised by cobweb reached 12% by the end of the crop cycles. None of the inoculated cropping trials treated with metrafenone showed any cobweb disease symptoms, and neither were any significant phytotoxic effects on mushroom yield recorded. These results indicated that metrafenone can be used as an alternative to prochloraz‐Mn in the control of cobweb disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号