首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   15篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   10篇
  2019年   7篇
  2018年   8篇
  2017年   7篇
  2016年   2篇
  2015年   7篇
  2014年   11篇
  2013年   11篇
  2012年   17篇
  2011年   17篇
  2010年   13篇
  2009年   22篇
  2008年   17篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   8篇
  2003年   15篇
  2002年   10篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
1.
In Streptomyces venezuelae fertility, defined as chromosomal gene recombination, was enhanced over 1000-fold when one parent in a biparental conjugational cross lacked the physically-undetected plasmid SVP1, as compared with crosses in which both parents carried SVP1. The existence of SVP1 and at least two other fertility plasmids, SVP2 and SVP3, was detected in S. venezuelae by 'lethal zygosis' elicited by a plasmid-plus mycelium in contact with a plasmid-minus mycelium. Conjugational crosses were used to construct a linkage map of S. venezuelae which was highly consistent with the map of analogous loci in S. coelicolor A3(2). A cluster of genes governing chloramphenicol biosynthesis was located near arg, cys and pdxB genes at a position roughly equivalent to the 1-2 o'clock region of the S. coelicolor A3(2) map.  相似文献   
2.
Two target polypeptides were detected by photoaffinity labelling of purified mung bean mitochondria using tritiated 2-azido-N6-benzylaminopurine. SDS-PAGE and fluorography of total mitochondrial proteins after the photoaffinity reaction showed a labelled 32 kDa polypeptide (intensely labelled) and a 57 kDa polypeptide (less intensely labelled). The latter was assumed to be the and/or subunit of F1ATPase since it was the most abundant polpeptide in gels stained with Coomassie Blue. Partial purification of F1ATPase demonstrated that the 32 kDa polypeptide was not a component of the ATPase complex. Fractionation experiments showed that the 32 kDa protein was integrally associated with mitochondrial membranes and could be enriched by simple washing and detergent extraction procedures.  相似文献   
3.
Ito  Osamu  Matsunaga  Ryoichi  Tobita  Satoshi  Rao  Theertham P.  Devi  Y. Gayatri 《Plant and Soil》1993,155(1):341-344
A medium-duration pigeonpea cultivar (ICP 1–6) and a hybrid sorghum (CSH 5) were grown on a shallow Alfisol in monocropping and intercropping systems. Using a monolith method, spatial distribution of nodulation, acetylene reduction activity (ARA) and root respiration were measured.The number, mass and ARA of nodules decreased exponentially with distance from the plant base except at the late reproductive stage. Nodulation and ARA tended to be higher in the intercrop than in the monocrop.Respiration rate of roots increased with distance from the plant base and reached a maximum value at about 20–30 cm. The rate was higher in pigeonpea than in sorghum and also higher in intercrop than in monocrop.This study suggests that pigeonpea roots are physiologically more active than sorghum roots, implying that pigeonpea may become a strong competitor for nutrients in the soil when intercropped. The nitrogen-fixing ability of pigeonpea may be enhanced by intercropping because the sorghum rapidly absorbed inorganic N which would otherwise inhibit N2 fixation.  相似文献   
4.
Journal of Plant Biochemistry and Biotechnology - Caseinolytic protease (Clp)/Hsp100 proteins are members of the AAA+ (ATPase associated with a variety of cellular activities) family of proteins...  相似文献   
5.
Plant Molecular Biology Reporter - Polyploidization plays an important role in the genesis of cultivated wheat (hexaploid and tetraploid) from its diploid progenitors. Thus, evolution during...  相似文献   
6.

Background

Japanese encephalitis virus (JEV) is a major cause of viral encephalitis in South and South-East Asia. Lack of antivirals and non-availability of affordable vaccines in these endemic areas are a major setback in combating JEV and other closely related viruses such as West Nile virus and dengue virus. Protein secondary structure mimetics are excellent candidates for inhibiting the protein-protein interactions and therefore serve as an attractive tool in drug development. We synthesized derivatives containing the backbone of naturally occurring lupin alkaloid, sparteine, which act as protein secondary structure mimetics and show that these compounds exhibit antiviral properties.

Methodology/Principal Findings

In this study we have identified 3,7-diazabicyclo[3.3.1]nonane, commonly called bispidine, as a privileged scaffold to synthesize effective antiviral agents. We have synthesized derivatives of bispidine conjugated with amino acids and found that hydrophobic amino acid residues showed antiviral properties against JEV. We identified a tryptophan derivative, Bisp-W, which at 5 µM concentration inhibited JEV infection in neuroblastoma cells by more than 100-fold. Viral inhibition was at a stage post-entry and prior to viral protein translation possibly at viral RNA replication. We show that similar concentration of Bisp-W was capable of inhibiting viral infection of two other encephalitic viruses namely, West Nile virus and Chandipura virus.

Conclusions/Significance

We have demonstrated that the amino-acid conjugates of 3,7-diazabicyclo[3.3.1]nonane can serve as a molecular scaffold for development of potent antivirals against encephalitic viruses. Our findings will provide a novel platform to develop effective inhibitors of JEV and perhaps other RNA viruses causing encephalitis.  相似文献   
7.
Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.  相似文献   
8.
9.
Ribozymes are RNA molecules capable of associating with other RNA molecules through base-pairing and catalyzing various reactions involving phosphate group transfer. Of particular interest to us is the well known ribozyme from Tetrahymena thermophila capable of catalyzing RNA splicing in eukaryotic systems, chiefly because of its potential use as a gene therapy agent. In this article we review the progress made towards visualizing the RNA splicing mediated by the Tetrahymena ribozyme in single living mammalian cells with the beta-lactamase reporter system and highlight the development made in imaging RNA splicing with the luciferase reporter system in living animals.  相似文献   
10.
Antibiotic resistance is recognized as a global threat to public health. The selection and evolution of antibiotic resistance in clinical pathogens were believed to be majorly driven by the imprudent use of antibiotics. However, concerns regarding the same, through selection pressure by a multitude of other antimicrobial agents, such as heavy metals, are also growing. Heavy metal contamination co-selects antibiotic and metal resistance through numerous mechanisms, such as co-resistance and cross-resistance. Here, we have reviewed the role of heavy metals as antimicrobial resistance driving agents and the underlying concept and mechanisms of co-selection, while also highlighting the scarcity of studies explicitly inspecting the process of co-selection in clinical settings. Prospective strategies to manage heavy metal-induced antibiotic resistance have also been deliberated, underlining the need to find specific inhibitors so that alternate medicinal combinations can be added to the existing therapeutic armamentarium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号