首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   14篇
  2021年   2篇
  2020年   1篇
  2015年   6篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   9篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
The RegA protein of bacteriophage T4 is a translational repressor that regulates expression of several phage early mRNAs. We have cloned wild-type and mutant alleles of the T4 regA gene under control of the heat-inducible, plasmid-borne leftward promoter (PL) of phage lambda. Expression of the cloned regA+ gene resulted in the synthesis of a protein that closely resembled phage-encoded RegA protein in biological properties. It repressed its own synthesis (autogenous translational control) as well as the synthesis of specific T4-encoded proteins that are known from other studies to be under RegA-mediated translational control. Cloned mutant alleles of regA exhibited derepressed synthesis of the mutant regA gene products and were ineffective in trans against RegA-sensitive mRNA targets. The effects of plasmid-encoded RegA proteins were also demonstrated in experiments using two compatible plasmids in uninfected Escherichia coli. The two-plasmid assays confirm the sensitivities of several cloned T4 genes to RegA-mediated translational repression and are well-suited for genetic analysis of RegA target sites. Repression specificity in this system was demonstrated by using wild-type and operator-constitutive translational initiation sites of T4 rIIB fused to lacZ. The results show that no additional T4 products are required for RegA-mediated translational repression. Additional evidence is provided for the proposal that uridine-rich mRNA sequences are preferred targets for the repressor. Surprisingly, plasmid-generated RegA protein represses the synthesis of some E. coli proteins and appears to enhance selectively the synthesis of others. The RegA protein may have multiple functions, and its binding sites are not restricted to phage mRNAs.  相似文献   
2.
Compilation of tRNA sequences   总被引:43,自引:27,他引:16       下载免费PDF全文
  相似文献   
3.
Kinetics of gametogenesis   总被引:2,自引:0,他引:2  
Hilscher  B.  Hilscher  W.  Bülthoff-Ohnolz  B.  Krämer  U.  Birke  A.  Pelzer  H.  Gauss  G. 《Cell and tissue research》1974,154(4):443-470
Cell and Tissue Research - In the rat (Wistar-WU) sexual differentiation of the gonads occurs between days 14 and 15 post conception (p.c.). At this time the oogonia and their parallel population...  相似文献   
4.
5.
Compilation of sequences of tRNA genes   总被引:13,自引:9,他引:4       下载免费PDF全文
  相似文献   
6.
7.
8.
Rhythmic activity of single cells or multicellular networks is a common feature of all organisms. The oscillatory activity is characterized by time intervals of several seconds up to many hours. Cellular rhythms govern the beating of the heart, the swimming behavior of sperm, cycles of sleep and wakefulness, breathing, and the release of hormones. Many neurons in the brain and cardiac cells are characterized by endogenous rhythmic activity, which relies on a complex interplay between several distinct ion channels. In particular, one type of ion channel plays a prominent role in the control of rhythmic electrical activity since it determines the frequency of the oscillations. The activity of the channels is thus setting the "pace" of the oscillations; therefore, these channels are often referred to as "pacemaker" channels. Despite their obvious important physiological function, it was not until recently that genes encoding pacemaker channels have been identified. Because both hyperpolarization and cyclic nucleotides are key elements that control their activity, pacemaker channels have now been designated hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. The molecular identification of the channels and the upcoming studies on their properties in heterologous systems will certainly enhance our understanding of "pacemaking" in physiological systems. This review gives a brief insight into the physiological importance of these channels and sums up what we have learned since the first cloning of genes succeeded (for recent reviews, see also Clapham 1998; Luthi and McCormick 1998a; Biel et al. 1999; Ludwig, Zong, Hofmann, et al. 1999; Santoro and Tibbs 1999).  相似文献   
9.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
10.
Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum (ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation ligase (HRD-ligase), and degraded by cytosolic 26S proteasomes. This process is termed ER-associated protein degradation (ERAD). We previously showed that the membrane protein Der1, which is a subunit of the HRD-ligase, is involved in the export of aberrant polypeptides from the ER. Unexpectedly, we also uncovered a close spatial proximity of Der1 and the substrate receptor Hrd3 in the ER lumen. We report here on a mutant Hrd3KR that is selectively defective for ERAD of soluble proteins. Hrd3KR displays subtle structural changes that affect its positioning toward Der1. Furthermore, increased quantities of the ER-resident Hsp70-type chaperone Kar2 and the Hsp40-type cochaperone Scj1 bind to Hrd3KR. Of note, deletion of SCJ1 impairs ERAD of model substrates and causes the accumulation of client proteins at Hrd3. Our data imply a function of Scj1 in the removal of malfolded proteins from the receptor Hrd3, which facilitates their delivery to downstream-acting components like Der1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号