首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   2篇
  2024年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Hurthle cells are found in thyroid neoplasms and in reactive nodules in thyroiditis or goitrogenic processes. Cytometric studies have evaluated Hurthle cell neoplasms but not their reactive counterparts. DNA content of Hurthle cells in 22 cases of autoimmune thyroiditis was measured by flow cytometry and image content of Hurthle cells in 22 cases of autoimmune thyroiditis was measured by flow cytometry and image processing using nuclei extracted from paraffin-embedded tissue after microdissection of the Hurthle cell nodules. All 22 autoimmune thyroiditis Hurthle cell nodules were diploid, including 16 without associated neoplasms and six with associated malignant neoplasms (four papillary carcinomas, one follicular carcinoma and one follicular adenoma with papillary carcinoma). Concordance between flow cytometry and image processing was 100%. These findings indicate that the markedly atypical Hurthle cells in autoimmune thyroiditis are diploid by DNA quantitation. This suggests that atypia in Hurthle cells due to reactive or neoplastic processes may be differentiated by quantitative DNA analysis.  相似文献   
2.
3.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   
4.
Ferredoxin-NADP(H) reductase (FNR) catalyses the final step of the photosynthetic electron transport in chloroplasts. Using an antisense RNA strategy to reduce expression of this flavoenzyme in transgenic tobacco plants, it has been demonstrated that FNR mediates a rate-limiting step of photosynthesis under both limiting and saturating light conditions. Here, we show that these FNR-deficient plants are abnormally prone to photo-oxidative injury. When grown under autotrophic conditions for 3 weeks, specimens with 20-40% extant reductase undergo leaf bleaching, lipid peroxidation and membrane damage. The magnitude of the effect was proportional to the light intensity and to the extent of FNR depletion, and was accompanied by morphological changes involving accumulation of aberrant plastids with defective thylakoid stacking. Damage was initially confined to chloroplast membranes, whereas Rubisco and other stromal proteins began to decline only after several weeks of autotrophic growth, paralleled by partial recovery of NADPH levels. Exposure of the transgenic plants to moderately high irradiation resulted in rapid loss of photosynthetic capacity and accumulation of singlet oxygen in leaves. The collected results suggest that the extensive photo-oxidative damage sustained by plants impaired in FNR expression was caused by singlet oxygen building up to toxic levels in these tissues, as a direct consequence of the over-reduction of the electron transport chain in FNR-deficient chloroplasts.  相似文献   
5.
The effect of prolonged (9 week) nutrient enrichment on the growth and photosynthetic rates of the zooxanthellate coral Stylophora pistillata was investigated. The main questions were: (1) what is the exposure time needed to induce measurable change in growth rate? (2) which are the concentrations of nitrogen and phosphorus required to cause changes in these rates? (3) what is the recovery potential of the corals after the nutrient stress? For this purpose, three tanks (N, P, NP) were enriched with ammonium (N), phosphorus (P) or both nutrients (NP), respectively. A fourth tank (C) served as a control. The growth of 40 nubbins (10 in each tank) was monitored during four periods: period 1 (nutrient-poor conditions), period 2 (10?μm NH4 and/or 2?μm PO4 enrichment), period 3 (20?μm NH4 and/or 2?μm PO4) and period 4 (nutrient-poor conditions). Period 4 was performed to study the recovery potential of corals after a nutrient stress. During period 1, growth rates remained constant in all tanks. In the P tank, growth rates declined during the two enrichment periods, with a total decrease of 60% by the end of period 3. In the N tank, growth rates remained nearly constant during period 2 but decreased in period 3 (60% decrease). In the NP tank, 50% and 25% decreases were observed during periods 2 and 3. At the end of the recovery period, a regain in growth rate was observed in the N and NP tanks (35 and 30% increase, respectively, compared with the rates measured at the end of period 3) and growth rates returned to 60% of the initial rates. By contrast, in the P tank, there was no regain in growth and a further decrease of 5% was observed. Rates of photosynthesis were often higher during the enriched than the nutrient-poor period (up to 150% increase). Corals with the highest percent increases in maximal gross photosynthetic rate (P g max ) had the smallest decreases in growth rate due to nutrient enrichment. In conclusion, high ammonium (20?μm) and relatively low phosphorus concentrations (2?μm) are required to induce a significant decrease in coral growth rate. The largest reduction was observed with both ammonium and phosphorus enrichment. The decrease in growth rate was rapid following nutrient enrichment, since a 10% decrease or more could be observed after the first week of treatment.  相似文献   
6.
7.
Root extract of liquorice is traditionally used to treat several diseases. Liquorice-derived constituents present several biological actions. In particular, glycyrrhizin and its aglycone, glycyrrhetinic acid, exhibit well-known cardiovascular properties. The aim of this research was to explore the direct cardiac activity of glycyrrhizin and glycyrrhetinic acid.The effects of synthetic glycyrrhizin and glycyrrhetinic acid were evaluated on the isolated and Langendorff perfused rat heart. The intracellular signaling involved in the effects of the two substances was analyzed on isolated and perfused heart and by Western blotting on cardiac extracts. Under basal conditions, both glycyrrhizin and glycyrrhetinic acid influenced cardiac contractility and relaxation. Glycyrrhizin induced significant positive inotropic and lusitropic effects starting from very low concentrations, while both inotropism and lusitropism were negatively affected by glycyrrhetinic acid. Both substances significantly increased heart rate. Analysis of the signal transduction mechanisms suggested that glycyrrhizin acts through the endothelin receptor type A/phospholipase C axis while glycyrrhetinic acid acts through endothelin receptor type B/Akt/nitric oxide synthase/nitric oxide axis.To our knowledge, these data reveal, for the first time, that both glycyrrhizin and glycyrrhetinic acid directly affect cardiac performance. Additional information on the physiological significance of these substances and their cardiac molecular targets may provide indication on their biomedical application.  相似文献   
8.
New fluorescent ligands for adenosine receptors (ARs), obtained by the insertion, in the N(6) position of NECA, of NBD-moieties with linear alkyl spacers of increasing length, proved to possess a high affinity and selectivity for the A(3) subtype expressed in CHO cells. In fluorescence microscopy assays, compound 2d, the most active and selective for human A(3)-AR, permitted visualization and localization of this human receptor subtype, showing its potential suitability for internalization and trafficking studies in living cells.  相似文献   
9.
The morphology and skeletal characteristics of colonies of the coral genus Stylophora living on the reef edge at 1 m depth on the Jordanian coast of the Gulf of Aqaba (Red Sea) are those of S. mordax (Dana 1846) which has not been reported previously from that area. These colonies were considered earlier as ecomorphs of S. pistillata (Esper 1797) which lives down to at least 67 m on the reef slopes. Growth, organic content and metabolism were compared in colonies living at different depths (1,5,10 and 30 m). The trends of twelve parameters between 1 and 5 m were different from the variation observed between 5 and 30 m. Colonies living at 1 m have a higher chlorophyll content but a lower metabolic activity and growth rate than colonies living at 5 m. Most of these pecularities cannot be explained by the influence of environmental factors. It is therefore suggested that S. mordax is a valid taxon.  相似文献   
10.
Previous studies have demonstrated that coral and algal calcification is tightly regulated by the calcium carbonate saturation state of seawater. This parameter is likely to decrease in response to the increase of dissolved CO2 resulting from the global increase of the partial pressure of atmospheric CO2. We have investigated the response of a coral reef community dominated by scleractinian corals, but also including other calcifying organisms such as calcareous algae, crustaceans, gastropods and echinoderms, and kept in an open‐top mesocosm. Seawater pCO2 was modified by manipulating the pCO2 of air used to bubble the mesocosm. The aragonite saturation state (Ωarag) of the seawater in the mesocosm varied between 1.3 and 5.4. Community calcification decreased as a function of increasing pCO2 and decreasing Ωarag. This result is in agreement with previous data collected on scleractinian corals, coralline algae and in a reef mesocosm, even though some of these studies did not manipulate CO2 directly. Our data suggest that the rate of calcification during the last glacial maximum might have been 114% of the preindustrial rate. Moreover, using the average emission scenario (IS92a) of the Intergovernmental Panel on Climate Change, we predict that the calcification rate of scleractinian‐dominated communities may decrease by 21% between the pre‐industrial period (year 1880) and the time at which pCO2 will double (year 2065).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号