首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   626篇
  免费   49篇
  国内免费   1篇
  676篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2015年   21篇
  2014年   30篇
  2013年   22篇
  2012年   38篇
  2011年   35篇
  2010年   29篇
  2009年   21篇
  2008年   45篇
  2007年   30篇
  2006年   21篇
  2005年   23篇
  2004年   32篇
  2003年   45篇
  2002年   22篇
  2000年   5篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1993年   9篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   4篇
  1987年   9篇
  1986年   9篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1982年   9篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   5篇
  1974年   4篇
  1973年   10篇
  1972年   6篇
  1971年   7篇
  1970年   4篇
  1969年   3篇
  1966年   4篇
  1943年   3篇
排序方式: 共有676条查询结果,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Summary The viscosities of blood from shorthorn sculpin (Myoxocephalus scorpius), longhorn sculpin (Myoxocephalus octodecemspinosus) and winter flounder (Pseudopleuronectes americanus) were compared using a cone-plate viscometer. Both species of sculpin were almost identical with respect to blood and plasma viscosity at the temperatures (0 and 15°C) and shear rates (2.3–90/s) examined. In contrast, the viscosities of winter flounder blood and plasma were considerably greater than those observed in the sculpins. This difference in blood viscosity between the shorthorn sculpin and the winter flounder persisted over the hematocrit range of 0 to 40% red blood cells. The viscosity of the plasma and the interactions between plasma proteins and red blood cells appeared to be the major reasons for the relatively high viscosity of the flounder blood. Although a proportion of the flounder blood viscosity was attributable to fibrinogen, other plasma proteins also appeared to play a significant role. The relatively low blood viscosity of the sculpin species may confer a circulatory advantage during periods of low water temperatures.  相似文献   
7.
Synopsis Laboratory studies were conducted on 15 schools of blackchin shiners, Notropis heterodon, to determine if they altered their structure in response to changing environmental demands. The hypothesis tested was that fish schools should sacrifice a flat, hydrodynamically efficient structure in favour of an unobstructed visual field in the presence of a predator by staggering in the vertical plane. Ten schools were exposed for two weeks to a simple environment with only a current. For the next two-week period a predator was added. Five control schools were exposed to the simple environment for both two-week periods. Six of the ten treated schools increased their staggering in the vertical dimension as predicted while none of the control schools changed. This result was suggestive that hydrodynamic advantages were sacrificed. Respirometer experiments indicated these fish were capable of achieving some hydrodynamic benefits from schooling but these benefits may be a function of fish size.  相似文献   
8.
The 104 nucleotides long 3' terminal region of TMV RNA was shown previously to contain two pseudoknotted structures (Rietveld et al. (1984), EMBO J. 3, 2613-2619). We here present evidence for the occurrence, within the 204 nucleotides long 3' noncoding region, of another highly structured domain located immediately adjacent to the tRNA-like structure of 95 nucleotides (Joshi et al. (1985) Nucleic Acids Res. 13, 347-354). A model for the three-dimensional folding of this region, containing three more pseudoknots, is proposed on the basis of chemical modification and enzymatic digestion. The existence of these three consecutive pseudoknots was supported by sequence comparisons with the RNA from the related tobamoviruses TMV-L, CcTMV and CGMMV. Coaxial stacking of the six double helical segments involved gives rise to the formation of a 25 basepair long quasi-continuous double helix. The results show that the three-dimensional folding of the 3' non-translated region of tobamoviral RNAs is largely maintained by the formation of five pseudoknots. The organisation of this region in the RNA of the tobamovirus CcTMV suggests that recombinational events among aminoacylatable plant viral RNAs have to be considered.  相似文献   
9.
ATP synthase, the assembly which makes ATP in mitochondria, chloroplasts and bacteria, uses transmembrane proton gradients generated by respiration or photosynthesis to drive the phosphorylation of ADP. Its membrane domain is joined by a slender stalk to a peripheral catalytic domain, F1-ATPase. This domain is made of five subunits with stoichiometries of 3 alpha: 3 beta: 1 gamma: 1 delta: 1 epsilon, and in bovine mitochondria has a molecular mass of 371,000. We have determined the 3-dimensional structure of bovine mitochondrial F1-ATPase to 6.5 A resolution by X-ray crystallography. It is an approximately spherical globule 110 A in diameter, on a 40 A stem which contains two alpha-helices in a coiled-coil. This stem is presumed to be part of the stalk that connects F1 with the membrane domain in the intact ATP synthase. A pit next to the stem penetrates approximately 35 A into the F1 particle. The stem and the pit are two examples of the many asymmetric features of the structure. The central element in the asymmetry is the longer of the two alpha-helices in the stem, which extends for 90 A through the centre of the assembly and emerges on top into a dimple 15 A deep. Features with threefold and sixfold symmetry, presumed to be parts of homologous alpha and beta subunits, are arranged around the central rod and pit, but the overall structure is asymmetric. The central helix provides a possible mechanism for transmission of conformational changes induced by the proton gradient from the stalk to the catalytic sites of the enzyme.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号