首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   31篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2018年   6篇
  2017年   1篇
  2016年   4篇
  2015年   14篇
  2014年   8篇
  2013年   24篇
  2012年   14篇
  2011年   13篇
  2010年   13篇
  2009年   9篇
  2008年   17篇
  2007年   15篇
  2006年   10篇
  2005年   9篇
  2004年   10篇
  2003年   12篇
  2002年   10篇
  2001年   11篇
  2000年   11篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
1.
Ca2+-dependent secretion in Paramecium involves the exocytic release of a paracrystalline secretory product, the trichocyst matrix, which undergoes a characteristic structural change from a highly condensed storage form (Stage I) to an extended needle-like structure (Stage III) during release. We studied trichocyst matrix expansion in vitro to examine factors regulating the state of secretory organelle content. A new method for the isolation of membrane-free, condensed (Stage I) trichocyst matrices is described. These highly purified, condensed matrices were used to develop a rapid quantitative, spectrophotometric assay for matrix expansion to examine factors regulating the Stage I and Stage III transition. Expansion from Stages I to III was elicited in vitro by addition of Ca2+ and we found that at neutral pH, expansion required a Ca2+ concentration slightly above 10(-6)M. Previous studies indicate that calmodulin (CaM) antagonists inhibit matrix expansion in vivo. However, in vitro matrix expansion is normal even when trichocyst matrices are preincubated in CaM antagonists before stimulation. Thus, matrix components themselves are unlikely to be the site of CaM antagonist action in vivo. In vitro matrix expansion is also modulated by pH. Decreasing pH to 6.0 inhibits expansion, i.e., expansion requires higher Ca2+ concentration. Conversely, increasing pH to greater than 7.0 promotes expansion, allowing it to occur at a lower Ca2+ concentration. The pH sensitivity of the Ca2+ binding sites of the matrix suggests that, in vivo, the interior of the trichocyst vesicle may be maintained at an acidic pH. Exposure of cells to acridine orange, a fluorescent amine that accumulates in acidic intracellular compartments, leads to its uptake and concentration within trichocysts. Thus intratrichocyst pH appears to be acidic in vivo and may serve as a regulatory or "safety" mechanism to inhibit premature expansion.  相似文献   
2.
Calmodulin antagonists inhibit secretion in Paramecium   总被引:6,自引:4,他引:2       下载免费PDF全文
Secretion in Paramecium is Ca2+-dependent and involves exocytic release of the content of the secretory organelle, known as the trichocyst. The content, called the trichocyst matrix, undergoes a Ca2+-induced reordering of its paracrystalline structure during release, and we have defined three stages in this expansion process. The stage I, or fully condensed trichocyst, is the 4 microns-long membrane-bounded form existing prior to stimulation. Stage II, the partially expanded trichocyst, we define as an intermediate stage in the transition, preceding stage III, the fully expanded extruded form which is a 20-40 microns-long needlelike structure. These stages have been used to assay the effects of trifluoperazine (TFP) and W-7, calmodulin (CaM) antagonists, on trichocyst matrix expansion in vivo. TFP and W-7 are shown to reversibly block matrix release induced by picric acid. Ultra-structural examination reveals that one effect of this inhibition is reflected in the organelles themselves, which are prevented from undergoing the stage I-stage II transition by preincubation in 14 microM TFP or 35 microM W-7 before fixation. This inhibition of expansion by TFP can be moderated but not abolished by high extracellular Ca2+ (5 mM). The moderation by high Ca2+ can be eliminated by raising TFP concentration to 20 microM. A possible explanation for the ability to titrate the inhibition in this manner is that TFP is acting to block expansion by binding to the Ca2+-CaM complex. Brief exposure of cells to the Ca2+ ionophore A23187 and 5 mM Ca2+ following TFP treatment promotes matrix expansion, although in 14 microM TFP a residual level of inhibition remains. These results suggest that, following stimulation, CaM regulates secretion in Paramecium, possibly by controlling the Ca2+-dependent matrix expansion which accompanies exocytosis in these cells.  相似文献   
3.
Synthesis and content of polyamines in bloodstream Trypanosma brucei   总被引:2,自引:0,他引:2  
The sensitive dansyl procedure was used to detect putrescine and spermidine, but not spermine and cadaverine, in pleomorphic Trypanosoma brucei. The polyamines were synthesized in vitro from [3H]ornithine, [14C]arginine and [14C]methionine. Proline, agmatine, and citrulline, but not glutamine, glutamic or pyroglutamic acids, stimulated spermidine formation from [4C]methionine. Putrescine and sperimidine synthesis occurred rapidly from ornithine: putrescine synthesis peaked in 0.5 h, spermidine in 1 h. Trypanosoma brucei assimilated exogenous 14C-labeled putrescine, spermidine, and spermine; spermidine and spermine were taken up 5 times as rapidly as putrescine. Polyamine syntheses may therefore be a practical target for novel trypanocies.  相似文献   
4.
5.
Fragile sites on chromosomes 9, at 9p21, 10, at 10q25 and 12, at 12q24, were found in the lymphocytes of some members of three families during the study for detection of a fragile X chromosome. The sites were found to be heritable and folato-sensitive. The genetic implications of these results are discussed.  相似文献   
6.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
7.
8.
The study of juvenile skeletal remains can yield important insights into the health, behavior, and biological relationships of past populations. However, most studies of past skeletal growth have been limited to relatively simple metrics. Considering additional skeletal parameters and taking a broader physiological perspective can provide a more complete assessment of growth patterns and environmental and genetic effects on those patterns. We review here some alternative approaches to ontogenetic studies of archaeological and paleontological skeletal material, including analyses of body size (stature and body mass) and cortical bone structure of long bone diaphyses and the mandibular corpus. Together such analyses can shed new light on both systemic and localized influences on bone growth, and the metabolic and mechanical factors underlying variation in growth. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats.  相似文献   
10.
TNFα plays key roles in the regulation of inflammation, cell death, and proliferation and its signaling cascade cross-talks with the insulin signaling cascade. PKCδ, a novel PKC isoform, is known to participate in proximal TNFα signaling events. However, it has remained unclear whether PKCδ plays a role in distal TNFα signaling events. Here we demonstrate that PKCδ is activated by TNFα in a delayed fashion that is temporally associated with JNK activation. To investigate the signaling pathways activating PKCδ and JNK, we used pharmacological and genetic inhibitors of NFκB. We found that inhibition of NFκB attenuated PKCδ and JNK activations. Further analysis revealed that ER stress contributes to TNFα-stimulated PKCδ and JNK activations. To investigate the role of PKCδ in TNFα action, we used 29-mer shRNAs to silence PKCδ expression. A reduction of ~90% in PKCδ protein levels reduced TNFα-stimulated stress kinase activation, including JNK. Further, PKCδ was necessary for thapsigargin-stimulated JNK activation. Because thapsigargin is a potent inducer of ER stress, we determined whether PKCδ was necessary for induction of the UPR. Indeed, a reduction in PKCδ protein levels reduced thapsigargin-stimulated CHOP induction, a hallmark of the UPR, but not BiP/GRP78 induction, suggesting that PKCδ does not globally regulate the UPR. Next, the role of PKCδ in TNFα mediated cross-talk with the insulin signaling pathway was investigated in cells expressing human IRS-1 and a 29-mer shRNA to silence PKCδ expression. We found that a reduction in PKCδ protein levels reversed the TNFα-mediated reduction in insulin-stimulated IRS-1 Tyr phosphorylation, Akt activation, and glycogen synthesis. In addition, TNFα-stimulated IRS protein Ser/Thr phosphorylation and degradation were blocked. Our results indicate that: 1) NFκB and ER stress contribute in part to PKCδ activation; 2) PKCδ plays a key role in the propagation of the TNFα signal; and 3) PKCδ contributes to TNFα-induced inhibition of insulin signaling events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号