首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7326篇
  免费   716篇
  国内免费   1059篇
  9101篇
  2024年   31篇
  2023年   72篇
  2022年   178篇
  2021年   296篇
  2020年   228篇
  2019年   275篇
  2018年   259篇
  2017年   207篇
  2016年   312篇
  2015年   449篇
  2014年   579篇
  2013年   571篇
  2012年   712篇
  2011年   596篇
  2010年   441篇
  2009年   422篇
  2008年   486篇
  2007年   485篇
  2006年   403篇
  2005年   369篇
  2004年   327篇
  2003年   280篇
  2002年   253篇
  2001年   155篇
  2000年   130篇
  1999年   138篇
  1998年   75篇
  1997年   42篇
  1996年   46篇
  1995年   32篇
  1994年   37篇
  1993年   24篇
  1992年   36篇
  1991年   25篇
  1990年   20篇
  1989年   17篇
  1988年   11篇
  1987年   10篇
  1986年   15篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1977年   3篇
  1975年   3篇
  1972年   7篇
  1970年   2篇
  1969年   4篇
  1967年   2篇
  1950年   3篇
排序方式: 共有9101条查询结果,搜索用时 0 毫秒
1.

Purpose  

Though the development of biofuel has attracted numerous studies for quantifying potential water demand applying life cycle thinking, the impacts of biofuel water consumption still remain unknown. In this study, we aimed to quantify ecological impact associated with corn-based bioethanol water consumption in Minnesota in responding to different refinery expansion scenarios by applying a life cycle impact assessment method.  相似文献   
2.
Relationships between induced high leaf intercellular CO2 concentrations, leaf K+ and NO3 ? ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO2, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K+, NO3 ? and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009–2010. The experimental treatments consisted of five K2O rates (0, 6, 12, 18, and 24 kg ha?1) and five N rates (0, 5, 10, 15, and 20 kg ha?1), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was ‘Mira’, a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO2 concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K+ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO2 inhibited leaf/fruit NO3 ? ion retention, but this inhibition did not occur in leaf/fruit K+ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO2, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO2 could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO3 ? retention. This inhibition did not find in leaf K+ ion and dissolved solid retention. Overlay co-limitation of leaf intercellular CO2 and translocation of leaf/fruit K+/NO3 ? and total dissolved solids could constrain more fruit formation attributes under full macronutrient supply than reduced inputs. It was suggested that low input would be an optimal and sustainable option for improving small fruit crop physiological development and dealing with macronutrient deficiency challenge.  相似文献   
3.
To investigate the effects of hydration status on oxidative DNA damage and exercise performance, 10 subjects ran on a treadmill until exhaustion at 80% VO2max during four different trials [control (C), 3% dehydration (D), 3% dehydration + water (W) or 3% dehydration + sports drink (S)]. Dehydration significantly decreased exercise time to exhaustion (D < C and S). Plasma MDA levels were significantly higher at pre-exercise in D than C. Plasma TAS was significantly lower at pre-exercise in C and S than in D, and was significantly lower in S than D at 60 min of recovery. Dehydration significantly increased oxidative DNA damage during exercise, but fluid replacement with water or sports drink alleviated it equally. These results suggest that (1) dehydration impairs exercise performance and increases DNA damage during exercise to exhaustion; and (2) fluid replacement prolongs exercise endurance and attenuates DNA damage.  相似文献   
4.
5.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
6.
Yarrowia lipolytica KCCM50506, which transforms isobutyric acid to L-#-hydroxy isobutyric acid (L-#-HIBA), was screened. Chemostat cultures were carried out in jar fermentors at dilution rates of 0.02 hу to 0.12 hу. L-#-HIBA fermentation-regulating factors were determined to be specific growth rate, and concentrations of glucose and isobutyric acid in fermentor from analysis of steady-state data. The specific productivity of L-#-HIBA increased as the specific growth rate increased, apparently as a growth-associated type of product formation. A fed-batch culture was carried out under optimum conditions where the concentrations of glucose and isobutyric acid in the fermentor were maintained at 23 g lу and 9 g lу, respectively. The concentrations of cells and L-#-HIBA obtained at the end of fermentation were 20 g lу and 49 g lу, respectively, corresponding to 2.0 and 2.7 times more than concentrations in batch culture.  相似文献   
7.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
8.
9.
We describe tests of the feasibility of a reconstructive technique to discriminate between expansive growth and active cell movement in the invasion of tissues by cancer cells. The densities of cancer cells in 2210 microns2 (grid) squares of standard 6 microns fixed, stained histologic sections of a nodule and an invasive cutaneous melanoma were determined, and density maps of the tumors constructed. An abrupt transition from saturation density to zero cell density was observed at the advancing edge (towards the stratum corneum) of the tumor nodule which was consistent with a model for expansion by growth (vis a tergo). In contrast, at the advancing edge of the invasive tumor, the transition from saturation to zero density (towards the subcutaneous tissues) occurred more gradually, over approximately 400 mum, which was consistent with a model for invasion by active movement of melanoma cells. The occurrence of statistically significant "high density regions" near to the advancing edge of the invasive tumor is consistent with an invasive pattern of active movement followed by focal proliferation of the cancer cells, in a repetitious manner. It therefore appears feasible to make kinetic reconstructions of some of the events in invasion, from static quantitative observations.  相似文献   
10.
Development of 8-cell bovine embryos derived from in vitro matured/in vitro fertilized (IVM/IVF) oocytes was evaluated in two simple, serum-free media (CZB and SOM) with buffalo rat liver cells co-culture (BRLC) or after conditioning compared to a commonly used, serum-supplemented complex medium TCM-199. In a 3 x 4 factorial design, 578 eight-cell embryos were randomly assigned to 12 treatment groups. The factors were: first, type of culture medium (M199/FBS, CZBg and SOM), and second, the use of BRLC (as co-culture or to condition media for 24 hr and 48 hr) and unconditioned media. Development to morula was not affected by the type of medium, but co-culture and 48 hr conditioning within media type resulted in better development when compared to the 24-hr conditioned or unconditioned groups. Blastocyst development in SOM (38.9%) was different (P < 0.05) than in CZBg (46.6%) and M199/FBS (48.7%) and was lowest in the unconditioned group (27.8%) followed by 24 hr conditioned (33.3%), 48 hr (56.3%), and co-culture (59.6%). No blastocyst expansion was observed with unconditioned media and 24 hr conditioned SOM. Significant differences (P < 0.05) were found among all treatment groups except the co-culture and 48-hr conditioned groups. Hatching occurred only with co-culture and 48-hr conditioned groups of M199/FBS and CZBg media. These data show that CZB with glucose conditioned by BRLC monolayers for 48 hr can support the development of IVM/IVF produced bovine embryos to blastocyst compared to culture in TCM-199 with serum. © 1994 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号