首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   56篇
  国内免费   1篇
  2024年   1篇
  2023年   5篇
  2022年   15篇
  2021年   25篇
  2020年   19篇
  2019年   25篇
  2018年   28篇
  2017年   27篇
  2016年   30篇
  2015年   54篇
  2014年   47篇
  2013年   71篇
  2012年   76篇
  2011年   81篇
  2010年   48篇
  2009年   35篇
  2008年   58篇
  2007年   47篇
  2006年   47篇
  2005年   36篇
  2004年   37篇
  2003年   38篇
  2002年   30篇
  2001年   18篇
  2000年   14篇
  1999年   10篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1973年   1篇
  1967年   2篇
  1966年   3篇
  1957年   1篇
排序方式: 共有985条查询结果,搜索用时 31 毫秒
1.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
2.
3.
Banana streak virus strain OL (BSV-OL) commonly infects new Musa hybrids, and this infection is thought to arise de novo from integrated virus sequences present in the nuclear genome of the plant. Integrated DNA (Musa6+8 sequence) containing the whole genome of the virus has previously been cloned from cv. Obino l’Ewai (Musa AAB group), a parent of many of the hybrids. Using a Southern blot hybridization assay, we have examined the distribution and structure of integrated BSV-OL sequences in a range of Musa cultivars. For cv. Obino l’Ewai, almost every restriction fragment hybridizing to BSV-OL was predicted from the Musa6+8 sequence, suggesting that this is the predominant type of BSV-OL integrant in the genome. Furthermore, since only two junction fragments of Musa/BSV sequence were detected, and the Musa6+8 sequence is believed to be integrated as multiple copies in a tandem array, then the internal Musa spacer sequences must be highly conserved. Similarly sized restriction fragments were detected in four BB group cultivars, but not in six AA or AAA group cultivars, suggesting that the BSV-OL sequences are linked to the B-genome of Musa. We also provide evidence that cv. Williams (Musa AAA group) contains a distinct badnavirus integrant that is closely related to the ‘dead’ virus integrant previously characterized from Calcutta 4 (Musa acuminata ssp. burmannicoides). Our results suggest that the virus integrant from cv. Williams is linked to the A-genome, and the complexity of the hybridization patterns suggest multiple sites of integration and/or variation in sequence and structure of the integrants.  相似文献   
4.
5.
Chicken breast muscle has three Ca2+-dependent proteinases, two requiring millimolar Ca2+ (m-calpain and high m-calpain) and one requiring micromolar Ca2+ (mu-calpain). High m-calpain co-purifies with mu-calpain through successive DEAE-cellulose (steep gradient), phenyl-Sepharose, octylamine agarose, and Sephacryl S-300 columns, but elutes after mu-calpain when using a shallow KCl gradient to elute a DEAE-cellulose column. The mu- and m-calpains have 80 and 28 kDa polypeptides and are analogous to the mu- and m-calpains that have been purified from bovine, porcine and rabbit skeletal muscle. High m-calpain, which seems to be a new Ca2+-dependent proteinase, is still heterogeneous after the DEAE-cellulose column eluted with a shallow KCl gradient. Additional purification through two successive HPLC-DEAE columns and one HPLC-SW-4000 gel permeation column produces a fraction having six major polypeptides and 6-8 minor polypeptides on SDS-PAGE. A 74-76 kDa polypeptide in this fraction reacts in Western blots with monospecific, polyclonal anti-calpain antibodies that react with both the 80 kDa and the 28 kDa polypeptides of mu- or m-calpain. High m-calpain also is related to mu- and m-calpain in that it causes the same limited digestion of skeletal muscle myofibrils, has a similar pH optimum near pH 7.9-8.4, requires Ca2+ for activity, and reacts with the calpain inhibitor, calpastatin, and a variety of serine and cysteine proteinase inhibitors in a manner identical to mu- and m-calpain. High m-calpain differs from mu- and m-calpain in its elution off DEAE-cellulose columns and its requirement of 3800 microM Ca2+ for one-half maximal activity compared with 5.35 microM Ca2+ for mu-calpain and 420 microM Ca2+ for m-calpain. The physiological significance of high m-calpain in unclear. The presence of mu-calpain in chicken breast muscle suggests that all skeletal muscles contain both mu- and m-calpain, although the relative proportions of these two proteinases may vary in different species.  相似文献   
6.
7.
D Singh  V Kumar    K N Ganesh 《Nucleic acids research》1990,18(11):3339-3345
The synthesis of oligodeoxynucleotides d(AT)5 in which specific adenines are linked at C-8 position with dansyl fluorophores via a variable polymethylene spacer chain are reported. This was achieved by a strategy involving prelabelling at the monomeric stage followed by solid phase assembly of oligonucleotides to obtain regiospecifically labeled oligonucleotides. Several mono and polydansyl d(AT)5 derivatives in which the fluorophore is linked via ethylene, tetramethylene and hexamethylene spacer arms were synthesised for a systematic study of their fluorescence characteristics. It was observed that (i) enhancements in fluorescence intensity and emission quantum yields are seen due to multiple labelling, (ii) the magnitude of enhancements are related to labelling configuration and (iii) quenching efficiency is minimal with shorter and rigid spacer arms. The results may aid rational design of multiple fluorescent DNA probes for nonradioactive detection of nucleic acids.  相似文献   
8.
9.
Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.  相似文献   
10.
Thrombin, a trypsin-like serine protease present in blood, plays a central role in the regulation of thrombosis and hemostasis. A cyclic pentapeptide, cyclotheonamide A (CtA), isolated from sponges of the genus Theonella, inhibits thrombin, trypsin, and certain other serine proteases. Enzyme inhibition data for CtA indicate that it is a moderate inhibitor of alpha-thrombin (K(i) = 1.0 nM), but substantially more potent toward trypsin (K(i) = 0.2 nM). The comparative study of the crystal structures of the CtA complexes of alpha-thrombin and beta-trypsin reported here focuses on structure-function relationships in general and the enhanced specificity of trypsin, in particular. The crystal structures of the CtA complexes of thrombin and trypsin were solved and refined at 1.7 and 2.0 A resolution, respectively. The structures show that CtA occupies the active site with the Pro-Arg motif positioned in the S2 and S1 binding sites. The alpha-keto group of CtA is involved in a tetrahedral intermediate hemiketal structure with Ser 195 OG of the catalytic triad and is positioned within bonding distance from, and orthogonal to, the re-face of the carbonyl of the arginine of CtA. As in other productive binding modes of serine proteases, the Ser 214-Gly 216 segment runs in a twisted antiparallel beta-strand manner with respect to the diaminopropionic acid (Dpr)-Arg segment of CtA. The Tyr 60A-Thr 60I insertion loop of thrombin makes a weak aromatic stacking interaction with the v-Tyr of CtA through Trp 60D. The Glu 39 Tyr and Leu 41 Phe substitutions in trypsin produce an enhanced aromatic interaction with D-Phe of CtA, which also leads to different orientations of the side chains of D-Phe and the v-Tyr. The comparison of the CtA complexes of thrombin and trypsin shows that the gross structural features of both in the active site region are the same, whereas the differences observed are mainly due to minor insertions and substitutions. In trypsin, the substitution of Ile 174-Arg 175 by Gly 174-Gln 175 makes the S3 aryl site more polar because the Arg 175 side chain is directed away from thrombin and into the solvent, whereas Gln 175 is not. Because the site is occupied by the Dpr group of CtA, the occupancy of the S3 site is better in trypsin than in thrombin. In trypsin, the D-Phe side chain of CtA fits between Tyr 39 and Phe 41 in a favorable manner, whereas in thrombin, these residues are Glu 39 and Leu 41. The higher degree of specificity for trypsin is most likely the result of these substitutions and the absence of the fairly rigid Tyr 60A-Thr 60I insertion loop of thrombin, which narrows access to the active site and forces less favorable orientations for the D-Phe and v-Tyr residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号