首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   993篇
  免费   55篇
  国内免费   1篇
  1049篇
  2024年   1篇
  2023年   6篇
  2022年   16篇
  2021年   27篇
  2020年   21篇
  2019年   23篇
  2018年   28篇
  2017年   30篇
  2016年   32篇
  2015年   55篇
  2014年   60篇
  2013年   79篇
  2012年   87篇
  2011年   82篇
  2010年   56篇
  2009年   41篇
  2008年   59篇
  2007年   58篇
  2006年   51篇
  2005年   40篇
  2004年   44篇
  2003年   43篇
  2002年   31篇
  2001年   15篇
  2000年   16篇
  1999年   10篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有1049条查询结果,搜索用时 15 毫秒
1.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
2.
Banana streak virus strain OL (BSV-OL) commonly infects new Musa hybrids, and this infection is thought to arise de novo from integrated virus sequences present in the nuclear genome of the plant. Integrated DNA (Musa6+8 sequence) containing the whole genome of the virus has previously been cloned from cv. Obino l’Ewai (Musa AAB group), a parent of many of the hybrids. Using a Southern blot hybridization assay, we have examined the distribution and structure of integrated BSV-OL sequences in a range of Musa cultivars. For cv. Obino l’Ewai, almost every restriction fragment hybridizing to BSV-OL was predicted from the Musa6+8 sequence, suggesting that this is the predominant type of BSV-OL integrant in the genome. Furthermore, since only two junction fragments of Musa/BSV sequence were detected, and the Musa6+8 sequence is believed to be integrated as multiple copies in a tandem array, then the internal Musa spacer sequences must be highly conserved. Similarly sized restriction fragments were detected in four BB group cultivars, but not in six AA or AAA group cultivars, suggesting that the BSV-OL sequences are linked to the B-genome of Musa. We also provide evidence that cv. Williams (Musa AAA group) contains a distinct badnavirus integrant that is closely related to the ‘dead’ virus integrant previously characterized from Calcutta 4 (Musa acuminata ssp. burmannicoides). Our results suggest that the virus integrant from cv. Williams is linked to the A-genome, and the complexity of the hybridization patterns suggest multiple sites of integration and/or variation in sequence and structure of the integrants.  相似文献   
3.
Oxygen reduction reaction (ORR) catalyzed by a bio-inspired iron porphyrin bearing a hanging carboxylic acid group over the porphyrin ring, and a tethered axial imidazole ligand was studied by DFT calculations. BP86 free energy calculations of the redox potentials and pK a’s of reaction components involved in the proton coupled electron transfer (PCET) reactions of the ferric-hydroxo and -superoxo complexes were performed based on Born–Haber thermodynamic cycle in conjunction with a continuum solvation model. The comparison was made with iron porphyrins that lack either in the hanging acid group or axial ligand, suggesting that H-bond interaction between the carboxylic acid and iron-bound hydroxo, aquo, superoxo, and peroxo ligands (de)stabilizes the Fe–O bonding, resulting in the increase in the reduction potential of the ferric complexes. The axial ligand interaction with the imidazole raises the affinity of the iron-bound superoxo and peroxo ligands for proton. In addition, a low-spin end-on ferric-hydroperoxo intermediate, a key precursor for O–O cleavage, can be stabilized in the presence of axial ligation. Thus, selective and efficient ORR of iron porphyrin can be achieved with the aid of the secondary coordination sphere and axial ligand interactions.  相似文献   
4.
The taxonomic ambiguity of the Indian mud crab (genus Scylla de Hann 1833) is still a cause of concern as several papers have been published with misleading identification. This is the first attempt to resolve the taxonomic uncertainty of the mud crab commonly available in Indian coastal waters using molecular genetic markers (ITS-1 and sequencing of COI gene) combined with traditional morphometry. Additionally, we developed a PCR method by which Indian mud crab species can be identified rapidly and effectively. The results clearly indicate that the green morph of the Indian mud crab is Scylla serrata and the brown morph is S. olivacea. The S. serrata commonly mentioned in the literature from India is S. olivacea; the S. tranquebarica noted by many Indian researchers should belong to S. serrata. Caution should be taken when interpreting or implementing the biological, molecular, and aquaculture data in the literature.  相似文献   
5.
Breast cancer metastasis is a major clinical problem. The molecular basis of breast cancer progression to metastasis remains poorly understood. PELP1 is an estrogen receptor (ER) coregulator that has been implicated as a proto-oncogene whose expression is deregulated in metastatic breast tumors and whose expression is retained in ER-negative tumors. We examined the mechanism and significance of PELP1-mediated signaling in ER-negative breast cancer progression using two ER-negative model cells (MDA-MB-231 and 4T1 cells) that stably express PELP1-shRNA. These model cells had reduced PELP1 expression (75% of endogenous levels) and exhibited less propensity to proliferate in growth assays in vitro. PELP1 downregulation substantially affected migration of ER-negative cells in Boyden chamber and invasion assays. Using mechanistic studies, we found that PELP1 modulated expression of several genes involved in the epithelial mesenchymal transition (EMT), including MMPs, SNAIL, TWIST, and ZEB. In addition, PELP1 knockdown reduced the in vivo metastatic potential of ER-negative breast cancer cells and significantly reduced lung metastatic nodules in a xenograft assay. These results implicate PELP1 as having a role in ER-negative breast cancer metastasis, reveal novel mechanism of coregulator regulation of metastasis via promoting cell motility/EMT by modulating expression of genes, and suggest PELP1 may be a potential therapeutic target for metastatic ER-negative breast cancer.  相似文献   
6.
The pathology and physiology of breast cancer(BC),including metastasis,and drug resistance,is driven by multiple signaling pathways in the tumor microenvironment(TME),which hamper antitumor immunity.Recently,long non-coding RNAs have been reported to mediate pathophysiological developments such as metastasis as well as immune suppression within the TME.Given the complex biology of BC,novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes.In this review,we describe the advances in the biology of breast neoplasia,including cellular and molecular biology,heterogeneity,and TME.We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC.Finally,we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms,crustaceans,and fishes and their synergistic effects in combination with other anticancer drugs.Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development,thus assisting current therapeutic regimens.  相似文献   
7.
Abstract

A new, facile synthesis of 7-methyl-8-oxoguanosine is reported. 2-Chloro-7-methylpurine-6, 8-dione (5) was silylated with hexamethyldi-silazane and the silylated intermediate, 6, glycosylated with 1-0-acetyl-2, 3, 5-tri-0-benzoyl-D-ribofuranose to yield 2-chloro-7-methyl-9-(2′, 3′,-5′-tri-0-benzoyl-β-D-ribofuranosyl) purin-6, 8-dione (8). Deprotection of 8 with sodium hydroxide in aqueous methanol gave 2-chloro-7-methyl-9-(β-D-ribofuranosyl) purine-6,8-dione (9), which was aminated with liquid ammonia or methanolic ammonia to yield 7-methyl-8-oxoguanosine (3).  相似文献   
8.
The International Plant Proteomics Organization (INPPO) is a non‐profit organization whose members are scientists involved or interested in plant proteomics. Since the publication of the first INPPO highlights in 2012, continued progress on many of the organization's mandates/goals has been achieved. Two major events are emphasized in this second INPPO highlights. First, the change of guard at the top, passing of the baton from Dominique Job, INPPO founding President to Ganesh Kumar Agrawal as the incoming President. Ganesh K. Agrawal, along with Dominique Job and Randeep Rakwal initiated the INPPO. Second, the most recent INPPO achievements and future targets, mainly the organization of first the INPPO World Congress in 2014, tentatively planned for Hamburg (Germany), are mentioned.  相似文献   
9.
Drought is the major environmental stress that limits rice productivity worldwide. In vitro somaclonal variation using different selection agents has been used for crop improvement. Here, rice plants of cv PR113 were selected in vitro on 30, 50 and 70 g L-1 polyethylene glycol 6,000 (PEG). Callus growth, proliferation, calli volume (first and second culture) and plantlet regeneration (third culture) were found to be decreased upto a certain level to acquire tolerance to PEG-induced drought. From the field data, 30 g L-1 PEG lines showed higher vegetative growth (plant height, tiller number, leaf number, shoot weight and root growth) as compared with 50 g L-1 PEG selected somaclone lines under limited irrigation. The yield parameters-panicle length, panicle weight, grains per panicle, 1,000-grain weight, grain yield per plant, harvest index and grain straw ratio were also higher in 30 g L-1 PEG lines as compared with 50 g L-1 PEG lines. The results, therefore indicate that 30 g L-1 PEG selected somaclone lines were more suited than 50 g L-1 PEG selected somaclone lines under stress as compared with WT. The finding suggests that rice cv PR113 somaclones generated on PEG are found to be drought tolerant under field condition with better yield.  相似文献   
10.

Background

The origin of extraordinarily rich biodiversity in tropical forests is often attributed to evolution under stable climatic conditions over a long period or to climatic fluctuations during the recent Quaternary period. Here, we test these two hypotheses using Dracaena cambodiana, a plant species distributed in paleotropical forests.

Methods

We analyzed nucleotide sequence data of two chloroplast DNA (cpDNA: atpB-rbcL and trnD-trnT) regions and genotype data of six nuclear microsatellites from 15 populations (140 and 363 individuals, respectively) distributed in Indochina Peninsular and Hainan Island to infer the patterns of genetic diversity and phylogeographic structure. The population bottleneck and genetic drift were estimated based upon nuclear microsatellites data using the software programs BOTTLENECK and 2MOD. The lineage divergence times and past population dynamics based on cpDNA data were estimated using coalescent-based isolation-with-migration (IMa) and BEAST software programs.

Results

A significant phylogeographic structure (N ST = 0.876, G ST = 0.796, F ST-SSR = 0.329, R ST = 0.449; N ST>G ST, R ST>F ST-SSR, P<0.05) and genetic differentiation among populations were detected. Bottleneck analyses and Bayesian skyline plot suggested recent population reduction. The cpDNA haplotype network revealed the ancestral populations from the southern Indochina region expanded to northward. The most recent ancestor divergence time of D. cambodiana dated back to the Tertiary era and rapid diversification of terminal lineages corresponded to the Quaternary period.

Conclusions

The results indicated that the present distribution of genetic diversity in D. cambodiana was an outcome of Tertiary dispersal and rapid divergence during the Quaternary period under limited gene flow influenced by the uplift of Himalayan-Tibetan Plateau and Quaternary climatic fluctuations respectively. Evolutionary processes, such as extinction-recolonization during the Pleistocene may have contributed to the fast diversification in D. cambodiana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号