首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   7篇
  2021年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
In meso-eutrophic Lake Constance (Germany-Austria-Switzerland),phytoplankton bioraass, pigments and water transparency, aswell as primary productivity, have been followed between 1980and 1989. During this period, municipal phosphorus loading declinedsignificantly. Since 1981, soluble reactive phosphorus (SRP)concentrations during deep lake mixing have decreased from 3.0to currently 1 6 mmol m3 at a rate of 7% year1.Nitrate concentrations, by contrast, continued to rise. Duringthe period of maximum phosphorus loading, flushing through theoutlet and sedimentation were about equally important sinksof phosphorus from the euphotic zone. Recently, however, sedimentationand subsequent burial of P in the bottom deposits contributedabout three-quarters to the overall P-losses from the systemMain reasons for this shift are unchanged settling fluxes ofphosphorus out of the euphotic zone and decreasing concentrationsof total phosphorus in the water. Only during spring, do concentrations of soluble reactive phosphoruswithin the euphotic zone decrease in proportion to the formationof particulate organic matter. Later during the season, euphoticSRP concentrations continue to be low but are no longer matchedby high plankton biomass because phosphorus is efficiently removedby settling of particles In spite of the observed dramatic decreasein phosphorus loading since 1980, chlorophyll concentrationsand water transparency, as well as annual phytoplankton productivity(300 g C m2), have not shown a consistent downward trend.However, the intensity of phosphorus regeneration within theeuphoric zone, which can be used as a measure of the degreeof nutrient limitation, is likely to have increased significantlyThe most probable explanation for the insensitivity of importanttrophic state indicators to reduced nutrient loading is that,in Lake Constance, biomass accumulation to a greater extentis controlled by losses, mainly grazing by zooplankton and sedimentation,than by primary resources. This is concluded from the observationthat phytoplankton biomass always falls far short of the nutrient-dependentcarrying capacity of the system.  相似文献   
2.
During thermal stratification, pronounced internal seiches occurin Lake Constance with periods of 4–6 days The amplitudesreach 12 m at the sampling site in berlinger See (northwesternpart of Lake Constance). Seiches change the thickness of thewarm and generally biologically rich epilimnion and, thus, alsothe areal abundance of planktonic organisms at a fixed samplingsite. The potential impact of seiche-dnven changes of epilimneticthickness on observed plankton abundance was calculated usingcontinuously recorded temperature profiles and weekly verticalprofiles of plankton biomass. Observed plankton biomass wasrecalculated by taking into account the effect of changing layerthickness in order to give a more realistic picture of biomasschanges caused by waxing and waning of populations Our calculationsimply that changes of strata thickness do not mask the generalseasonal trend in population dynamics (e g. spring bloom andclear water phase), estimates of average yearly standing stockare not significantly affected if sampling is done at leastweekly. However, changes of strata thickness can alter arealplankton abundance at the sampling site by a factor of 2 within2 days During pronounced seiches, areal abundance of phytoplankton,which generally exhibit a stronger vertical gradient than-mostother plankton, may be changed by a factor of 3–4 withinhours Hence, at our sampling site, the impact of changes instrata thickness cannot be ignored for detailed analysis ofpopulation dynamics of autotrophs involving comparisons betweensingle observations  相似文献   
3.
Phytoplankton biomass and species composition were measured with a relatively high temporal resolution (once or twice a week during the growing season) from 1979 to 1989 in Lake Constance/Überlingersee. Over this period soluble reactive phosphorus (SRP) concentrations during winter mixing were reduced by ca. 50% from 104 to 47 g 1–1, which caused a prolongation and amplification of the epilimnetic P depletion during the growth period. Seasonal dynamics of phytoplankton reacted to the decrease of SRP in the following ways: (1) Algal biomass decreased at least proportionally to the winter SRP concentrations in summer, but not in spring and autumn when biomass fluctuated irregularly. (2) The peak of biomass concentration changed from summer to spring. (3) The earlier onset of epilimnetic P depletion during the season in recent years promoted a stronger growth of some pennate diatoms in spring. It caused an amplification of the silicon depletion in summer, which may cause still greater reduction of diatoms and total algal biomass in summer. (4) Reduction of algal biomass during the clear-water phase proper became shorter and less pronounced. (5) The temporal variability of algal biomass decreased in summer and autumn but not in spring. (6) Average cell sizes remained unchanged in summer and autumn but increased in spring during the beginning of oligotrophication. These results are largely in agreement with other studies on lake restoration and expectations derived from the PEG (Plankton Ecology Group) model (Sommer et al. 1986). They show that a 50% reduction of SRP concentrations during homothermy may have pronounced effects on seasonal dynamics of algal biomass in a large and deep lake. The algal response to the external change of SRP concentrations can be described by the Le Chatelier principle, implying that the internal structure of the system (e.g. species composition) changes in order to minimize the effect of the external pressure (e.g. reduction of total biomass). Suggestions are made as to how this system behaviour may emerge from local interactions.  相似文献   
4.
In Lake Constance, after several decades of cutrophication, a decrease in phosphorus loading over the last decade has lead to a partial recovery from eutrophication. Here we analyse the shift in the taxonomic composition of phytoplankton during the first decade of oligotrophication in Lake Constance. During the 1980s, spring total P concentrations decreased from ca. 130 to less than 50 ·l–1. This decrease was reflected by an approximately proportional decrease in summer phytoplankton biomass while spring phytoplankton biomass seemed unresponsive. Major taxonomic changes occured during both growth seasons. In spring, the proportion of diatoms, green algae and Chrysophyta increased while the proportion of Cryptophyta decreased. The summer trend was very different: the relative importance of diatoms decreased and Cryptophyta and Chrysophyta increased, while Chlorophyta reached their peak around 1985. These trends are also analysed at the genus level. Comparison with taxonomic trends during the eutrophication period shows the expected reversals in most cases. Comparison with other lakes shows general similarities, with the notable exception that Planktothrix rubescens has never been important in Lake Constance. The increase of diatoms during spring is attributed to their improved competitive performance with increasing Si:P ratios. Their decrease during summer is explained by the increasing silicate removal from the epilimnion by increasing spring populations.  相似文献   
5.
Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time‐invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to previous studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species.  相似文献   
6.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   
7.
Plankton communities in acidic mining lakes (pH 2.5-3.3) are species-poor because they face extreme environmental conditions, e.g. 150mg l(-1) Fe2+ +Fe3+. We investigated the growth characteristics of the dominant pigmented species, the flagellate Chlamydomonas acidophila, in semi-continuous culture experiments under in situ conditions. The following hypotheses were tested: (1) Low inorganic carbon (IC) concentrations in the epilimnion (e.g. 0.3 mg l(-1)) arising from the low pH limit phototrophic growth (H-1); (2) the additional use of dissolved organic carbon (mixotrophy) leads to higher growth rates under IC-limitation (H-2), and (3) phagotrophy is not relevant (H-3). H-1 was supported as the culture experiments, in situ PAR and IC concentrations indicated that IC potentially limited phototrophic growth in the mixed surface layers. H-2 was also supported: mixotrophic growth always exceeded pure phototrophic growth even when photosynthesis was saturated. Dark growth in filtered lake water illuminated prior to inoculation provided evidence that Chlamydomonas was able to use the natural DOC. The alga did not grow on bacteria, thus confirming H-3. Chlamydomonas exhibited a remarkable resistance to starvation in the dark. The compensation light intensity (ca. 20 micromol photons m(-2) s(-1)) and the maximum phototrophic growth (1.50 d(-1)) fell within the range of algae from non-acidic waters. Overall, Chlamydomonas, a typical r-strategist in circum-neutral systems, showed characteristics of a K-strategist in the stable, acidic lake environment in achieving moderate growth rates and minimizing metabolic losses.  相似文献   
8.
Abstract We studied the selection response of the freshwater grazing zooplankter, Daphnia galeata, to increased abundance of cyanobacteria in its environment. Cyanobacteria are a poor‐quality and often toxic food. Distinct genotypes of D. galeata were hatched from diapausing eggs extracted from three time horizons in the sediments of Lake Constance, Europe, covering the period 1962 to 1997, a time of change in both the prevalence of planktonic cyanobacteria and levels of phosphorus pollution. We assessed whether the grazers evolved to become more resistant to dietary cyanobacteria by exposing genetically distinct clones to two diets, one composed only of the nutritious green alga, Scenedesmus obliquus (good food), and the other a mixture of S. obliquus and the toxic cyanobacterium Microcystis aeruginosa (poor food). Genotype performance was measured as the specific rate of weight gain from neonate to maturity (gj). We evaluated evolutionary change in the Daphnia population using an analysis of reaction norms based on relative (log‐transformed) changes in gj. Log(gj) is a measure of the proportional effect of dietary cyanobacteria on other fitness components of the Daphnia phenotype. For comparison, we also analyze absolute (i.e., nontransformed) changes in gj and discuss the interpretations of the two approaches. Statistical results using a general linear model demonstrate a significant effect of genotype (showing differences in gj among genotypes), a significant genotype X food‐type interaction (showing differences in phenotypic plasticity among genotypes), and, in the case of log‐transformed data, a significant sediment‐genotype‐age X food‐type interaction. The latter shows that phenotypic plasticity evolved over the period studied. Two constraints act on response to selection in the D. galeata‐Lake Constance system. First, gj on a diet containing poor food is highly correlated with gj on a diet of good food, thus evolving resistance also meant evolving an increase in gj on both diets. Second, because genotypes with a high gj also grow to a large adult body size, which in turn increases Daphnia vulnerability to fish predation, we suggest that selection only acted to favor genotypes possessing a high potential gj after cyanobacteria became prevalent. The presence of cyanobacteria depressed realized gj and led to animals of small adult body size even if their genotypes had the potential for high gj and large size. With realized gj reduced, genotypes with an inherently high value could be selected even in the presence of predatory fish. The joint action of selection by dietary cyanobacteria and vulnerability to fish predation provides an explanation for the observed evolution of resistance to poor food through reduced phenotypic plasticity.  相似文献   
9.
Phytoplankton dynamics in a shallow eutrophic lake were investigatedover a 3-year period with respect to environmental forces whichdrive species composition and diversity. Diversity was calculatedon the basis of species as well as on the basis of their functionalproperties (the C-R-S concept). Stratification and water columnmixing had a strong impact on phytoplankton composition. Applicationof a similarity–diversity model revealed that a high diversitywas a transient non-stable state, whereas drastic changes orlong-lasting stable environmental conditions are characterizedby low diversity. This effect was more pronounced when the diversitywas calculated on the basis of the phytoplankton species' functionalproperties. Thus, this functional approach supports the intermediatedisturbance hypothesis from field data.  相似文献   
10.
Clear-water phase (CWP) is an important event in seasonal planktonsuccession. We examined the influence of all herbivorous zooplanktonon its initiation under different weather and climatic conditionsusing up to 19 years of observations from the large, deep LakeConstance (Europe) and estimates of relative clearance rates.A CWP occurred regularly, even if daphnid biomass was stillvery low. CWP was attributed to strong grazing either by a daphnid-dominatedzooplankton community or by a diverse assemblage consistingof micro- and meso-zooplankton. Both types of zooplankton communitiesoccurred with approximately the same frequency. The timing ofthe CWP was unrelated to the North Atlantic Oscillation (NAO)but correlated with the wind-dependent intensity of deep verticalmixing 3 months earlier, during early spring. Less mixing enabledearly growth of phytoplankton, ciliates and rotifers despitelow temperatures, which prevented daphnid development at thistime. This resulted in enhanced grazing of ciliates and rotifers,which increased the importance of phytoplankton less ediblefor most ciliates, rotifers and daphnids. Ciliates clearly dominatedthe grazing pressure on phytoplankton throughout spring, maintaininghigh biomasses together with the phytoplankton for up to 2 months.A CWP was observed when herbivores grazing on larger phytoplanktondeveloped in addition to ciliates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号