首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1999年   1篇
  1993年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Biotic and abiotic consequences of differences in leaf structure   总被引:7,自引:1,他引:6  
Both within and between species, leaves of plants display wide ranges in structural features. These features include: gross investments of carbon and nitrogen substrates (e.g. leaf mass per unit area); stomatal density, distribution between adaxial and abaxial surfaces, and aperture; internal and external optical scattering structures; defensive structures, such as trichomes and spines; and defensive compounds, including UV screens, antifeedants, toxins, and silica abrasives. I offer a synthesis of selected publications, including some of my own. A unifying theme is the adaptive value of expressing certain structural features, posed as metabolic costs and benefits, for (1) competitive acquisition and use of abiotic resources (such as water, light and nitrogen) and (2) regulation of biotic interactions, particularly fungal attack and herbivory. Both acclimatory responses in one plant and adaptations over evolutionary time scales are covered where possible. The ubiquity of trade-offs in function is a recurrent theme; this helps to explain diversity in solutions to the same environmental challenges but poses problems for investigators to uncover numerous important trade-offs. I offer some suggestions for research, such as on the need for models that integrate biotic and abiotic effects (these must be highly focused), and some speculations, such as on the intensity of selection pressures for these structures.  相似文献   
2.
When stressed by low nutrient availability, young sunflowerplants (Helianthus annuus) showed responses seen in many otherspecies: increases in root uptake capacity (Vmax, l/Km), root:shoot ratio, and putative nutrient-use efficiency, nUE=l/(tissuenutrient content). A straightforward mechanistic model is derivedfor relative growth rate (RGR) in solution culture in termsof these factors. A linear regression based on the model indicatesa negative role for nUE, which violates a premise of the model.A revised model proposes that primary adaptations are only inuptake rate and growth or nutrient allocations, and these actthrough the photosynthetic utility of nutrient. The tissue nutrientcontent and associated nUE become dependent quantities. Thepredictions for RGR, as tested by linear regression, are improved.The model predicts that nUE can increase as external solutionconcentration decreases, but decreases with increased uptakeadaptations in one given environment. The decrease in nUE compromisespotential gains in RGR from uptake adaptations, and makes increasesin root: shoot ratio a nearly insignificant contributor to earlyRGR. The model and associated regression analyses are generalizedfor additional adaptations such as increased root fineness andfor different quantitative ways that a nutrient may limit photosynthesis.The model and analyses are also generalized to plant growthin soil and growth without functional balance between root andshoot. Key words: Relative growth rate, Helianthus annuus, nutrient stress, nutrient use efficiency, functional balance  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号