首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  2015年   2篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   10篇
  2009年   5篇
  2008年   11篇
  2007年   8篇
  2006年   13篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1971年   1篇
  1958年   1篇
  1957年   3篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Abstract: Common reed (Phragmites australis) forms dense stands with deep layers of residual organic matter that negatively affects plant diversity and possibly habitat use by wetland birds. We sought to determine whether seasonal relative abundance and species richness of birds varied among 3 habitat types in Great Lakes coastal wetland complexes recently invaded by common reed. We used fixed-distance point counts to determine species relative abundances and species richness in edge and interior locales within common reed, cattail (Typha spp.), and meadow marsh habitats of various sizes during 2 summers (2001 and 2002) and 1 autumn (2001) at Long Point, Lake Erie, Ontario, Canada. We found that total relative abundance and species richness of birds were greater in common reed habitat compared to cattail or meadow marsh habitats. However, we also found that relative abundance of marsh-nesting birds was greater in meadow marsh habitat than in cattail and common reed during summer. Lastly, we found that, irrespective of habitat type, habitat edges had higher total relative abundance and species richness of birds than did habitat interiors. Our results show that common reed provides suitable habitat for a diversity of landbirds during summer and autumn but only limited habitat for many marsh-nesting birds during summer. Based on these results, we recommend restoration of meadow marsh habitat through reduction of common reed in Great Lakes wetlands where providing habitat for breeding marsh-nesting birds is an objective. Managers also might consider reducing the size of nonnative common reed stands to increase edge effect and use by birds, possibly including wetland birds.  相似文献   
2.
Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long‐term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long‐lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes require experiments on decadal time scales. But decadal experiments by themselves may not be adequate because many of the slow processes have characteristic time scales much longer than experiments can be maintained. This article promotes a coordinated approach that combines long‐term, large‐scale global change experiments with process studies and modeling. Long‐term global change manipulative experiments, especially in high‐priority ecosystems such as tropical forests and high‐latitude regions, are essential to maximize information gain concerning future states of the earth system. The long‐term experiments should be conducted in tandem with complementary process studies, such as those using model ecosystems, species replacements, laboratory incubations, isotope tracers, and greenhouse facilities. Models are essential to assimilate data from long‐term experiments and process studies together with information from long‐term observations, surveys, and space‐for‐time studies along environmental and biological gradients. Future research programs with coordinated long‐term experiments, process studies, and modeling have the potential to be the most effective strategy to gain the best information on long‐term ecosystem dynamics in response to global change.  相似文献   
3.
The processes which determine the structure of plant communities vary across spatial and temporal scales. Climatic factors are more likely to influence community structure at a regional scale with more transient environmental effects such as disturbance or demographic interactions having a greater influence at local scales. Understanding these differences is important for managing communities at a landscape scale. Triodia spp. grasslands are the most extensive plant community in Australia, covering 1.4 million km2, and yet little is known about the processes which structure these communities. We collected data on six sympatric Triodia spp. at the regional, landscape and local scale across the 325 000 ha property, Mornington Wildlife Sanctuary, in the Kimberley region of northern Western Australia to investigate the processes which structure this community. Regionally we looked for correlations between species distributions and substrate or rainfall. At the landscape scale we collected data on substrate, drainage and vegetation type and at the local scale we determined the extent to which individuals form mono‐specific stands both along and across the contour gradient. Only one species, T. aeria, was found to be substrate specific and only T. epactia was restricted to the drier southern end of the property. The other species were not restricted by substrate or rainfall at the regional scale and were found to be habitat generalists at the landscape scale. All species grew in mono‐specific stands with little to no mixing at shared boundaries. However, this pattern broke down when crossing the contour gradient on hillsides. The results suggest rainfall may influence the distribution of some Triodia spp. at a regional scale with interspecific competition, due to differences in post‐fire regeneration niches, structuring the community at the local scale. At the landscape scale community structure appears to be influenced by feedback mechanisms involving differences in the post‐fire regeneration strategies of sympatric species and subsequent competition for establishment microsites.  相似文献   
4.
Masquerading animals benefit from the difficulty that predators have in differentiating them from the inedible objects, such as twigs, that they resemble. The function of masquerade has been demonstrated, but how it interacts with the life history of organisms has not yet been studied. Here, we report the use of comparative analyses to test hypotheses linking masquerade to life‐history parameters. We constructed a phylogenetic tree of the British species of the lepidoptera families Geometridae and Drepanidae, and compiled life history and coloration data from the literature. We found that masquerade is associated with the exploitation of a greater diversity of host plants whether measured by the number of families or genera. We found a positive relationship between body size and polyphagy among masquerading species, and no relationship among cryptic species. Among those species predominantly found on woody host plants, masquerading species are more likely to overwinter as larvae while cryptic species mostly overwinter as pupae. Polyphenism was associated with multivoltinism in masquerading species but not cryptic species. Taken together, our results show that masquerade must be viewed as a strategy distinct to crypsis and hence may provide insights into the evolution of both defensive strategies. Our study further demonstrates the utility of broad‐scale between‐species comparisons in studying associations between diverse life‐history parameters and sensory aspects of predator‐prey interactions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 90–103.  相似文献   
5.
Aposematism is a well known and widely used strategy for reducing predation by conspicuous signalling of unprofitability. However, the increased conspicuousness could make this strategy costly if there are no secondary defences to back the signal up. This has made the elucidation of the evolutionary mechanisms for aposematism and that of the closely‐related Batesian and Mullerian mimicry difficult. The present study aims to test whether cryptic and nondefended prey could reduce their predation risk by grouping with aposematic and defended prey. To do this, we used groups of artificial baits that were either cryptic and palatable or conspicuous and unpalatable, along with the corresponding control treatments. These were then presented in mixed and homogeneous treatment groups within a field setting and the local wild bird assemblage was allowed to select and remove baits at will. The results obtained show that undefended non‐aposematic prey can benefit by grouping with aposematic prey, with no evidence that predation rates for aposematic prey were adversely affected by this association. These results provide insights into the evolution of Batesian mimicry. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 81–89.  相似文献   
6.
1. Little is known about hydrological influences on tropical waterbird communities. We used a 16‐year data set (1991–2007) of waterbird censuses, together with a classification of observed species into foraging guilds, to explore the relationships between natural variations in flow regime, foraging guild and the community composition of waterbirds at the Okavango River in the Caprivi Strip of north‐eastern Namibia, southern Africa. 2. We addressed three hypotheses to explain variation in waterbird community composition: (i) exploitation (birds move towards resource‐rich patches to exploit periods of high food abundance); (ii) escapism (declines in regional habitat quality force birds to aggregate in perennial waterbodies); and (iii) interaction (bird assemblages are dominated by intra‐ and interspecific interactions, such as flock formation for breeding or moulting, that can be explained better by life history demands or competition than by resource availability). 3. Waterbirds in different foraging guilds responded strongly but at different periods to changes in the hydrological environment, creating a complex but predictable successional pattern in community composition through time. Deep‐water feeders responded fastest (abundance peaking 2 months post‐flood), followed by shallow‐water feeders (4 months) and emergent vegetation feeders (7 months). Species that forage on short vegetation or in mud showed a bimodal response with peaks in abundance at 3 and 8 months post‐flood. 4. Our results indicated a strong effect of the local flow regime and hence supported the exploitation hypothesis. The foraging guild approach allowed us to identify clear patterns in a highly complex ecosystem and shows considerable promise as an analytical tool for similar data sets. Our results further suggest that while the entire bird community will be affected by hydrological alterations such as impoundments, water extraction and climate change, deep‐water feeders may be one of the most vulnerable groups.  相似文献   
7.
Abstract In March 2000, Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern periphery of their range, where lynx habitat is disjunct and snowshoe hare (Lepus americanus) densities are low. Forest conditions vary across lynx range; thus, region-specific data on the habitat requirements of lynx are needed. We studied lynx in northern Maine, USA, from 1999 to 2004 to assess quality and potential for forests in Maine to sustain lynx populations. We trapped and radiocollared 43 lynx (21 M, 22 F) during this period and evaluated diurnal habitat selection by 16 resident adult lynx (9 M, 7 F) monitored in 2002. We evaluated lynx selection of 8 habitats at multiple spatial scales, and related lynx habitat selection to snowshoe hare abundance. Lynx preferred conifer-dominated sapling stands, which supported the highest hare densities on our study site (x̄ = 2.4 hares/ha), over all other habitats. The habitats where lynx placed their home ranges did not differ by sex. However, within their home ranges, males not only preferred conifer-dominated sapling stands, but also preferred mature conifer, whereas females singularly preferred conifer-dominated sapling stands. Approximately one-third of Maine's spruce-fir forest and nearly 50% of our study area was regenerating conifer or mixed-sapling forest, resulting from a disease event and intensive forest management (e.g., large clear-cuts). Our findings suggest that current habitat conditions in Maine are better than western montane regions and approach conditions in boreal forests during periods of hare abundance. We recommend that forest landowners maintain a mosaic of different-aged conifer stands to ensure a component of regenerating conifer-dominated forest on the landscape.  相似文献   
8.
  • 1 The western Steller sea lion Eumetopias jubatus population has experienced a chronic decline since the 1960s. The causes are likely multifactorial and a combination of anthropogenic and natural factors. A draft revised recovery plan for the Steller sea lion has been published by the US National Marine Fisheries Service, listing both anthropogenic and natural factors that may have contributed to the observed decline or which may be a threat to the recovery of the western Steller sea lion population. The purpose of this review is to consider the anthropogenic threats to this stock.
  • 2 Anthropogenic sources of mortality include fisheries competition resulting in nutritional stress, mortality incidental to commercial fisheries (i.e. fisheries by‐catch), subsistence hunts, legal and illegal shooting, commercial hunts, anthropogenic‐related contamination, and research‐induced mortalities.
  • 3 We present evidence that the following anthropogenic factors likely contributed to the decline of the western Steller sea lion population over the last 40 years: (i) mortality incidental to commercial fisheries (i.e. by‐catch); (ii) commercial hunting of western Steller sea lions; and (iii) legal and illegal shooting; whereas the subsistence hunts for western Steller sea lions and mortality incidental to research were not likely to be contributors to the observed decline.
  • 4 Further, we present evidence that the following can be excluded as significant anthropogenic threats to the recovery of the western Steller sea lion population: (i) mortality incidental to commercial fishing; (ii) legal and illegal shooting; (iii) commercial hunts of Steller sea lions; (iv) subsistence hunting; and (v) mortality incidental to research.
  • 5 Competition with fisheries resulting in nutritional stress, and the potential impacts of contaminants, are two anthropogenic factors that should continue to be a priority for the various organizations currently doing research on this population.
  相似文献   
9.
Abstract We measured the plasticity of the response of photosynthesis to nutrient supply in seedlings of the dominant four conifer and broadleaved angiosperm tree species from an indigenous forest in South‐westland, New Zealand. We hypothesized that the response of conifers to differing nutrient supply would be less than the response for the angiosperms because of greater adaptation to low fertility conditions. In Prumnopitys ferruginea (D. Don) de Laub. the maximum velocity of electron transport, Jmax, doubled with a 10‐fold increase in concentration of nitrogen supply. In Dacrydium cupressinum Lamb. the maximum velocity of carboxylation, Vcmax, doubled with a 10‐fold increase in phosphorus supply. In contrast, photosynthetic capacity for the angiosperm species Weinmannia racemosa L.f. was affected only by the interaction of nitrogen and phosphorus and photosynthetic capacity of Metrosideros umbellata Cav. was not affected by nutrient supply. The response of the conifers to increasing availability of nutrient suggests greater plasticity in photosynthetic capacity, a characteristic not generally associated with adaptation to soil infertility, thus invalidating our hypothesis. Our data suggest that photosynthetic response to nutrient supply cannot be broadly generalized between the two functional groups.  相似文献   
10.
Retention of green leaf area in grain sorghum under post‐anthesis drought, known as stay‐green, is associated with greater biomass production, lodging resistance and yield. The stay‐green phenomenon can be examined at a cell, leaf, or whole plant level. At a cell level, the retention of chloroplast proteins such as LHCP2, OEC33 and Rubisco until late in senescence has been reported in sorghum containing the KS19 source of stay‐green, indicating that photosynthesis may be maintained for longer during senescence in these genotypes. At a leaf level, longevity of photosynthetic apparatus is intimately related to nitrogen (N) status. At a whole plant level, stay‐green can be viewed as a consequence of the balance between N demand by the grain and N supply during grain filling. To examine some of these concepts, nine hybrids varying in the B35 and KS19 sources of stay‐green were grown under a post‐anthesis water deficit. Genotypic variation in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen (SLN) and N uptake during grain filling. Matching N supply from age‐related senescence and N uptake during grain filling with grain N demand found that the shortfall in N supply for grain filling was greater in the senescent than stay‐green hybrids, resulting in more accelerated leaf senescence in the former. We hypothesise that increased N uptake by stay‐green hybrids is a result of greater biomass accumulation during grain filling in response to increased sink demand (higher grain numbers) which, in turn, is the result of increased radiation use efficiency and transpiration efficiency due to higher SLN. Delayed leaf senescence resulting from higher SLN should, in turn, allow more carbon and nitrogen to be allocated to the roots of stay‐green hybrids during grain filling, thereby maintaining a greater capacity to extract N from the soil compared with senescent hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号