首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5729篇
  免费   506篇
  国内免费   4篇
  2012年   564篇
  2011年   641篇
  2010年   119篇
  2009年   48篇
  2008年   579篇
  2007年   546篇
  2006年   505篇
  2005年   469篇
  2004年   491篇
  2003年   463篇
  2002年   414篇
  2001年   337篇
  2000年   450篇
  1999年   171篇
  1998年   18篇
  1997年   10篇
  1996年   7篇
  1995年   13篇
  1994年   13篇
  1993年   11篇
  1992年   6篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   10篇
  1984年   11篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1979年   6篇
  1977年   8篇
  1976年   6篇
  1967年   3篇
  1966年   4篇
  1959年   14篇
  1958年   26篇
  1957年   19篇
  1956年   10篇
  1955年   19篇
  1954年   19篇
  1953年   26篇
  1952年   21篇
  1951年   17篇
  1950年   10篇
  1949年   9篇
  1948年   10篇
  1944年   4篇
  1943年   4篇
  1942年   3篇
排序方式: 共有6239条查询结果,搜索用时 364 毫秒
1.
2.
3.
4.
5.
6.
7.
Variation in Cd accumulation between Nicotiana species but not varieties has been observed in seedlings grown in solution culture with moderate-to-low levels of Cd. Nicotiana tabacum has been characterized as a leaf and root accumulator while Nicotiana rustica is shown to be primarily a root accumulator, having about half the leaf Cd per gram dry weight of N. tabacum. This phenotype is retained in the mature N. rustica plant. To characterize these two species which differ in their modes of Cd accumulation, tissue Cd distribution, partitioning of metal in soluble and insoluble fractions and the contribution of soluble Cd-binding proteins (peptides) to total plant Cd was assessed using mature solution cultured plants. Metal accumulation was highest in the most mature leaves and in young roots. The preponderance of young roots in N. rustica may, in part, account for low leaf/high root Cd accumulation in this species. While Cd-binding peptides appear to be a principal form of Cd in leaves and roots of seedlings and these also occur in mature leaves, Cd is equally distributed between soluble (about 80% as Cd-binding peptide) and uncharacterized insoluble forms in mature plant roots.  相似文献   
8.
In soybean seeds the level of hydroxyproline is regulated in a developmental and tissue-specific manner. The seed coat contains approximately 77% of the total hydroxyproline in the seed at all stages of development. We determined the ratio of hydroxyproline to dry weight in a number of tissues within the seed; however, only the seed coat shows an increase in this ratio during development. Within the many cell layers of the seed coat, hydroxyproline is most abundant in the external layer. The hydroxyproline is present as an hydroxyproline-rich cell wall glycoprotein. The protein is rich in hydroxyproline (36%), lysine (11%), proline (10%), histidine (9%), tyrosine (9%), and serine (8%). The carbohydrate portion is 90 mole% arabinose and 10 mole% galactose. The arabinose residues are attached to hydroxyproline mostly in the form of trisaccharides. The apparent molecular weight of this glycoprotein is 100,000 daltons.  相似文献   
9.
14CO2 photoassimilation in the presence of MgATP, MgADP, and MgAMP was investigated using intact chloroplasts from Sedum praealtum, a Crassulacean acid metabolism plant, and two C3 plants: spinach and peas. Inasmuch as free ATP, ADP, AMP, and uncomplexed Mg2+ were present in the assays, their influence upon CO2 assimilation was also examined. Free Mg2+ was inhibitory with all chloroplasts, as were ADP and AMP in chloroplasts from Sedum and peas. With Sedum chloroplasts in the presence of ADP, the time course of assimilation was linear. However, with pea chloroplasts, ADP inhibition became progressively more severe, resulting in a curved time course. ATP stimulated assimilation only in pea chloroplasts. MgATP and MgADP stimulated assimilation in all chloroplasts. ADP inhibition of CO2 assimilation was maximal at optimum orthophosphate concentrations in Sedum chloroplasts, while MgATP stimulation was maximal at optimum or below optimum concentrations of orthophosphate. MgATP stimulation in peas and Sedum and ADP inhibition in Sedum were not sensitive to the addition of glycerate 3-phosphate (PGA).

PGA-supported O2 evolution by pea chloroplasts was not inhibited immediately by ADP; the rate of O2 evolution slowed as time passed, corresponding to the effect of ADP on CO2 assimilation, and indicating that glycerate 3-phosphate kinase was a site of inhibition. Likewise, upon the addition of AMP, inhibition of PGA-dependent O2 evolution became more severe with time. This did not mirror CO2 assimilation, which was inhibited immediately by AMP. In Sedum chloroplasts, PGA-dependent O2 evolution was not inhibited by ADP and AMP. In chloroplasts from peas and Sedum, the magnitude of MgADP and MgATP stimulation of PGA-dependent O2 evolution was not much larger than that given by ATP, and it was much smaller than MgATP stimulation of CO2 assimilation. Analysis of stromal metabolite levels by anion exchange chromatography indicated that ribulose 1,5-bisphosphate carboxylase was inhibited by ADP and stimulated by MgADP in Sedum chloroplasts.

The appearance of label in the medium was measured when [U-14C] ADP-loaded Sedum chloroplasts were challenged with ATP, ADP, or AMP and their Mg2+ complexes. The rate of back exchange was stimulated by the presence of Mg2+. This suggests that ATP, ADP, and AMP penetrate the chloroplast slower than their Mg2+ complexes. A portion of the CO2 assimilation and O2 evolution data could be explained by differential penetration rates, and other proposals were made to explain the remainder of the observations.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号