首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   12篇
  2022年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   8篇
  2003年   9篇
  2002年   10篇
  2001年   9篇
  2000年   12篇
  1999年   12篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1973年   1篇
  1972年   3篇
  1970年   3篇
  1969年   2篇
  1924年   1篇
  1915年   1篇
  1913年   1篇
  1912年   1篇
  1907年   1篇
  1899年   1篇
  1882年   1篇
  1879年   1篇
  1875年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
1.
2.
3.
A single-crystal, X-ray diffraction study was performed on a nonalkenic, cyclic trimer (C18H18O9, 4) of levoglucosenone, in order to confirm its chemical structure. Crystals of 4 are orthorhombic, with unit-cell parameters of a = 792.20, b = 1874.35, c = 2383.02 pm, space group P212121, and z = 8. The structure was solved by direct methods, and refined by least-squares to R = 0.032, based on 2990 unique reflections. Each asymmetrical unit contains two symmetry-independent molecules of 4 and one of acetone. The previously assigned chemical structure and stereochemistry of 4 were found to be correct.  相似文献   
4.
Commercially available lactase (beta-D-galactoside galactohydrolase, EC 3.2.1.23) enzymes produced from Kluyveromyces fragilis and Kluyveromyces lactis were accessed as catalysts for use in the production of beta-galactopyranosides of various alcohols using lactose as galactosyl donor. The yield of galactoside was enhanced by using the highest practical concentrations of both lactose and alcohol acceptor. The concentrations and thus yield, were limited by the solubility of the substrates. The increase in galactoside yield with increasing lactose concentration appeared to be specific to the lactose substrate and not due to water activity alterations, because addition of maltose to a fixed concentration of lactose had no effect. During the course of the reaction, the yield of galactoside peaked after around 70% to 80% of the lactose was consumed, due to hydrolysis of the product by the enzyme. A wide variety of compounds with primary or secondary hydroxyl groups could act as acceptors, the essential requirement being at least some water solubility. Addition of organic cosolvents had little effect on galactoside yield except when it increased the water solubility of sparingly soluble alcohols. Some galactosides were synthesized on a gram scale to determine practical product recoveries and improve purification methods for large-scale synthesis. Initial purification by hydrophobic chromatography (for galactosides of hydrophobic alcohols) or strong anion-exchange chromatography (for galactosides of hydrophilic alcohols) separated galactosides, galactobiosides, and higher oligomers from reducing sugars. A facile separation of the galactoside and galactobioside could then be effected by flash chromatography on silica gel. (c) 1993 John Wiley & Sons, Inc.  相似文献   
5.
Heating levoglucosenone in aqueous triethylamine gives a dimer and two trimers in yields of 8, 18, and 56%, respectively. These compounds have been isolated crystalline, and their structures and stereochemistry have been investigated by 13C- and 1H-n.m.r. and other spectroscopic methods. These data indicate that the dimer is apparently formed by Michael addition to provide a C-3-C-4 linkage. Similar reactions provide a non-olefinic, C-3-C-4-linked, cyclic trimer and an olefinic, cyclic trimer containing two C-3-C-4 linkages and one C-2-C-3 linkage.  相似文献   
6.
The xylogalactan sulfate from Chondria macrocarpa (Ceramiales,Rhodophyta)   总被引:1,自引:1,他引:0  
A structure is proposed for the complex xylogalactan sulfate from Chondria macrocarpa. The hot-water extract of C. macrocarpa was desulfated or alkali-treated and Smith degraded. Constituent sugars and their substitution patterns were identified using a modified Hakamori methylation procedure suited to sulfated polysaccharides and a double hydrolysis-reduction protocol that yielded derivatives from all of the sugar residues, including the labile 3,6-anhydrogalactosyl residues. The polymer has an agar-type backbone of alternating 3-linked \-d- and 4-linked -L-galactopyranosyl units. The d-residues are partially sulfated on O-2 (50%) and O-6 (20–30%). About 40% of the l-residues are present as the 3,6-anhydride and 25% as its precursor l-galactose 6-sulfate. A significant proportion of the remaining l-galactosyl residues have both a d-xylopyranosyl substituent on O-3 and a sulfate ester on O-6 and are stable to alkali.  相似文献   
7.
8.
9.
Transition states can be predicted from an enzyme's affinity to related transition-state analogues. 5'-Methylthioadenosine nucleosidases (MTANs) are involved in bacterial quorum sensing pathways and thus are targets for antibacterial drug design. The transition-state characteristics of six MTANs are compared by analyzing dissociation constants (K(d)) with a small array of representative transition-state analogues. These inhibitors mimic early or late dissociative transition states with K(d) values in the picomolar range. Our results indicate that the K(d) ratio for mimics of early and late transition states are useful in distinguishing between these states. By this criterion, the transition states of Neisseria meningitides and Helicobacter pylori MTANs are early dissociative, whereas Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae MTANs have late dissociative characters. This conclusion is confirmed independently by the characteristic [1'- (3)H] and [1'- (14)C] kinetic isotope effects (KIEs) of these enzymes. Large [1'- (3)H] and unity [1'- (14)C] KIEs are observed for late dissociative transition states, whereas early dissociative states showed close-to-unity [1'- (3)H] and significant [1'- (14)C] KIEs. K d values of various MTANs for individual transition-state analogues provide tentative information about transition-state structures due to varying catalytic efficiencies of enzymes. Comparing K d ratios for mimics of early and late transition states removes limitations inherent to the enzyme and provides a better predictive tool in discriminating between possible transition-state structures.  相似文献   
10.
Ricin A-chain inhibitors resembling the oxacarbenium ion transition state   总被引:1,自引:0,他引:1  
Ricin toxin A-chain (RTA) is expressed by the castor bean plant and is among the most potent mammalian toxins. Upon activation in the cytosol, RTA depurinates a single adenine from position 4324 of rat 28S ribosomal RNA, causing inactivation of ribosomes by preventing the binding of elongation factors. Kinetic isotope effect studies have established that RTA operates via a D(N)*A(N) mechanism involving an oxacarbenium ion intermediate with bound adenine [Chen, X.-Y., Berti, P. J., and Schramm, V. L. (2000) J. Am. Chem. Soc. 122, 1609-1617]. On the basis of this information, stem-loop RNA molecules were chemically synthesized, incorporating structural features of the oxacarbenium ion-like transition state. A 10-base RNA stem-loop incorporating (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol at the depurination site binds four times better (0.57 microM) than the 10-base RNA stem-loop with adenosine at the depurination site (2.2 microM). A 10-base RNA stem-loop with 1,2-dideoxyribitol [(2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] at the depurination site binds with a Kd of 3.2 microM and tightens to 0.75 microM in the presence of 9-deazaadenine. A similar RNA stem-loop with 1,4-dideoxy-1,4-imino-D-ribitol at the depurination site binds with a K(d) of 1.3 microM and improves to 0.65 micro;M with 9-deazaadenine added. When (3S,4R)-4-hydroxy-3-(hydroxymethyl)pyrrolidine was incorporated at the depurination site of a 14-base RNA stem-loop, the Kd was 0.48 microM. Addition of 9-deazaadenine tightens the binding to 0.10 microM whereas added adenine increases the affinity to 12 nM. The results of this study are consistent with the unusual dissociative D(N)*A(N) mechanism determined for RTA. Knowledge of this intermediate has led to the design and synthesis of the highest affinity inhibitor reported for the catalytic site of RTA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号