首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   6篇
  63篇
  2021年   1篇
  2018年   1篇
  2015年   3篇
  2014年   2篇
  2013年   8篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1968年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.

Mixotrophy (MX, also called partial mycoheterotrophy) in plants is characterized by isotopic abundances that differ from those of autotrophs. Previous studies have evaluated mycoheterotrophy in MX plants associated with fungi of similar ecological characteristics, but little is known about the differences in the relative abundances of 13C and 15N in an orchid species that associates with several different mycobionts species. Since the chlorophyllous orchid Cremastra variabilis Nakai associates with various fungi with different ecologies, we hypothesized that it may change its relative abundances of 13C and 15N depending on the associated mycobionts. We investigated mycobiont diversity in the chlorophyllous orchid C. variabilis together with the relative abundance of 13C and 15N and morphological underground differentiation (presence or absence of a mycorhizome with fungal colonization). Rhizoctonias (Tulasnellaceae, Ceratobasidiaceae, Sebacinales) were detected as the main mycobionts. High differences in δ13C values (– 34.7? to?– 27.4 ‰) among individuals were found, in which the individuals associated with specific Psathyrellaceae showed significantly high relative abundance of 13C. In addition, Psathyrellaceae fungi were always detected on individuals with mycorhizomes. In the present study, MX orchid association with non-rhizoctonia saprobic fungi was confirmed, and the influence of mycobionts on morphological development and on relative abundance of 13C and 15N was discovered. Cremastra variabilis may increase opportunities to gain nutrients from diverse partners, in a bet-hedging plasticity that allows colonization of various environmental conditions.

  相似文献   
2.
The effects on cholesterolemia of dietary additions (1.2%) of methionine and cystine to a 20% casein diet were studied in both euthyroid and thiouracil-induced hypothyroid rats. The hypothyroid rats lapsed into endogenous hypercholesterolemia, which was due to an increase in the very-low-density lipoprotein plus low-density lipoprotein-cholesterol [(VLDL+LDL)-Ch] concentration with no change in the high-density lipoprotein-cholesterol (HDL-Ch) concentration. These lipoprotein changes in hypothyroid rats resulted in a marked (5-fold) increase in the atherogenic index [AI, (VLDL-LDL)-Ch/HDL-Ch] when compared to that of elutyroid rats. Methionine reduced the hypercholesterolemia in the hypothyroid state by suppressing the elevation in (VLDL + LDL)-Ch with no significant reduction in HDL-Ch, resulting in a notable fall of AI, while methionine showed no significant effect on cholesterolemia and AI in the euthyroid state. Cystine induced hypercholesterolemia due to a significant elevation of HDL-Ch in the euthyroid state, but the amino acid showed no significant effect on cholesterolemia and hence AI in the hypothyroid state. These results suggest that methionine overcomes changes in the parameters involved in Ch biodynamics that cause hypercholesterolemia in the hypothyroid state, whereas cystine counterbalances the parameter changes and results in diminution of its hypercholesterolemic effect in the hypothyroid state.  相似文献   
3.
BL191, a newly developed phosphodiesterase inhibitor, markedly potentiated a differentiation of neuroblastoma cell clones (Neuro2a, NS-20Y, and N1E115) induced by dibutyryl cyclic adensoine 3′:5′-monophosphate(dibutyryl cAMP) and prostaglandin E1 (PGE1). BL191 (1 mM) inhibited DNA synthesis more strongly when used together with PGE1 (0.5 μg/ml) and dibutyryl cAMP (0.5 mM) than papaverine (1.6 μg/ml) alone did. The inhibition rates of DNA synthesis were 72.5% for N1E-115, 75.3% for Neuro2a, and 82.5% for NS-20Y. After the treatment with BL191. PGE1, and dibutyryl cAMP for 48 h all of three cell lines became enlarged and flattened, and extended long processes. The specific activities of choline acetyl transferase (EC 2.3.1.9) of NS-20Y and dopamine β-hydroxylase (EC 1.14.17.1) of N1E-115 increased about 3-fold as compared to the controls. The tumorigenicities of Neuro2a and N1E-115 cells were decreased, but not of NS-20Y. These data suggest the heterogenous responsiveness in neuroblastoma cells to drug treatment.  相似文献   
4.
Chromatin-induced spindle assembly depends on regulation of microtubule-depolymerizing proteins by the chromosomal passenger complex (CPC), consisting of Incenp, Survivin, Dasra (Borealin), and the kinase Aurora B, but the mechanism and significance of the spatial regulation of Aurora B activity remain unclear. Here, we show that the Aurora B pathway is suppressed in the cytoplasm of Xenopus egg extract by phosphatases, but that it becomes activated by chromatin via a Ran-independent mechanism. While spindle microtubule assembly normally requires Dasra-dependent chromatin binding of the CPC, this function of Dasra can be bypassed by clustering Aurora B-Incenp by using anti-Incenp antibodies, which stimulate autoactivation among bound complexes. However, such chromatin-independent Aurora B pathway activation promotes centrosomal microtubule assembly and produces aberrant achromosomal spindle-like structures. We propose that chromosomal enrichment of the CPC results in local kinase autoactivation, a mechanism that contributes to the spatial regulation of spindle assembly and possibly to other mitotic processes.  相似文献   
5.
Funabiki H 《Cell》2005,121(2):157-158
Spindle assembly and nuclear transport both utilize the same simple device: Ran-GTP-sensitive interaction of importin beta and its cargo proteins. In this issue of Cell, report that one of these cargos required for spindle assembly turns out to be Rae1, previously known as an mRNA export protein. This study reveals the importance of RNAs in spindle structure.  相似文献   
6.
Shugoshins (Sgo) are conserved proteins that act as protectors of centromeric cohesion and as sensors of tension for the machinery that eliminates improper kinetochore-microtubule attachments. Most vertebrates contain two Sgo proteins, but their specific functions are not always clear. Xenopus laevis Sgo1, XSgo1, protects centromeric cohesin from the prophase dissociation pathway. Here, we report the identification of XSgo2 and show that it does not regulate cohesion. Instead, we find that it participates in bipolar spindle assembly. Both Sgo proteins interact physically with the Chromosomal Passenger Complex (CPC) containing Aurora B, a key regulator of mitosis, but the functional consequences of such interaction are distinct. XSgo1 is required for proper localization of the CPC while XSgo2 positively contributes to its activation and the subsequent phosphorylation of at least one key substrate for bipolar spindle assembly, the microtubule depolymerizing kinesin MCAK (Mitotic Centromere-Associated Kinesin). Thus, the two Xenopus Sgo proteins have non-overlapping functions in chromosome segregation. Our results further suggest that this functional specificity could rely on the association of XSgo1 and XSgo2 with different regulatory subunits of the PP2A complex.  相似文献   
7.
It was reported recently that vertebrate-type steroids exist and control reproduction in several groups of invertebrates, including molluscs. Sexually reproductive freshwater planarians of the species Bdellocephala brunnea have a limited breeding season in their natural habitat. This phenomenon suggests that some endogenous reproductive hormones might play a role in vivo. However, to date, sex steroids such as androgen, estrogen, and progesterone have not been found in planarians. The goal of the present study was to determine whether androgen is present in sexual planarians such as B. brunnea. The presence of testosterone was detected by high-pressure liquid chromatography and, in sexually reproductive individuals in which no seminal vesicles were visible, the level of testosterone was about twice than that in individuals with visible seminal vesicles. An enzyme-linked immunosorbent assay revealed that the levels of testosterone during terminal spermatogenesis were three times higher than during the spermatocyte-building phase. Our results indicate that sexually reproductive freshwater planarians such as B. brunnea might have vertebrate-type steroids and show variation in testosterone levels during spermatogenesis.  相似文献   
8.
Effects of leucine and related compounds on protein synthesis were studied in L6 myotubes. The incorporation of [3H]tyrosine into cellular protein was measured as an index of protein synthesis. In leucine-depleted L6 myotubes, leucine and its keto acid, α-ketoisocaproic acid (KIC), stimulated protein synthesis, while D-leucine did not. Mepacrine, an inhibitor of both phospholipases A2 and C, canceled stimulatory actions of L-leucine and KIC on protein synthesis. Neither indomethacin, an inhibitor of cyclooxygenase, nor caffeic acid, an inhibitor of lipoxygenase, diminished their stimulatory actions, suggesting no involvement of arachidonic acid metabolism. Conversely, 1-O-hexadecyl-2-O-methylglycerol, an inhibitor of proteinkinase C, significantly canceled the stimulatory actions of L-leucine and KIC on protein synthesis, suggesting an involvement of phosphatidylinositol degradation and activation of protein kinase C. L-Leucine caused a rapid activation of protein kinase C in both cytosol and membrane fractions of the cells. These results strongly suggest that both L-leucine and KIC stimulate protein synthesis in L6 myotubes through activation of phospholipase C and protein kinase C.  相似文献   
9.
10.
SMARCAL1 (also known as HARP) is a SWI/SNF family protein with an ATPase activity stimulated by DNA containing both single-stranded and double-stranded regions. Mutations in SMARCAL1 are associated with the disease Schimke immuno-osseous dysplasia, a multisystem autosomal recessive disorder characterized by T cell immunodeficiency, growth inhibition, and renal dysfunction. The cellular function of SMARCAL1, however, is unknown. Here, using Xenopus egg extracts and mass spectrometry, we identify SMARCAL1 as a protein recruited to double-stranded DNA breaks. SMARCAL1 binds to double-stranded breaks and stalled replication forks in both egg extract and human cells, specifically colocalizing with the single-stranded DNA binding factor RPA. In addition, SMARCAL1 interacts physically with RPA independently of DNA. SMARCAL1 is phosphorylated in a caffeine-sensitive manner in response to double-stranded breaks and stalled replication forks. It has been suggested that stalled forks can be stabilized by a mechanism involving caffeine-sensitive kinases, or they collapse and subsequently recruit Rad51 to promote homologous recombination repair. We show that depletion of SMARCAL1 from U2OS cells leads to increased frequency of RAD51 foci upon generation of stalled replication forks, indicating that fork breakdown is more prevalent in the absence of SMARCAL1. We propose that SMARCAL1 is a novel DNA damage-binding protein involved in replication fork stabilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号