首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   23篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   17篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   7篇
  2006年   15篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   15篇
  2001年   7篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   5篇
  1986年   3篇
  1985年   2篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
1.
Chitinase activity was induced in cultured carrot cells by incubationwith mycelial walls of a fungus, Chaetomium globosum. Both intra-and extracellular chitinases were resolved into four componentsby gel filtration chromatography. The extracellular enzymesliberated soluble oligosaccharides of different sizes from insolublechitin, suggesting that these carrot chitinases are endo-hydrolases.The solubilized chitinase digests obtained from insoluble mycelialwalls of C. globosum and chitin were fractionated by gel filtrationchromatography, and the elicitor activity of each fraction forthe accumulation of phenolic acids in cultured carrot cellswas determined. In both solubilized fragments of fungal wallsand of chitin, elicitor-active oligosaccharides were distributedin many fractions, however, potent activity for inducing phenolicacid synthesis was observed in the high molecular weight fractions. (Received October 5, 1987; Accepted February 12, 1988)  相似文献   
2.
We determined the partial amino (N)-terminal amino acid sequence of hepatitis C virus p21 (nonstructural protein 2 [NS2]). Cleavage at the p21 (NS2) N terminus depended on the presence of microsomal membranes. The amino-terminal position of p21 (NS2) was assigned to amino acid 810 of the hepatitis C virus strain IIJ precursor polyprotein. Mutation of the alanine residue at position P1 of the putative cleavage site inhibited membrane-dependent processing. This alteration in processing together with the fact that hydrophobic amino acid residues are clustered upstream of the putative cleavage site suggested the involvement of a signal peptidase(s) in the cleavage. Furthermore, mutation analysis of this possible cleavage site revealed the presence of another microsome membrane-dependent cleavage site upstream of the N terminus of p21 (NS2).  相似文献   
3.
The interaction between Escherichia coli O157:H7 and its specific bacteriophage PP01 was investigated in chemostat continuous culture. Following the addition of bacteriophage PP01, E. coli O157:H7 cell lysis was observed by over 4 orders of magnitude at a dilution rate of 0.876 h−1 and by 3 orders of magnitude at a lower dilution rate (0.327 h−1). However, the appearance of a series of phage-resistant E. coli isolates, which showed a low efficiency of plating against bacteriophage PP01, led to an increase in the cell concentration in the culture. The colony shape, outer membrane protein expression, and lipopolysaccharide production of each escape mutant were compared. Cessation of major outer membrane protein OmpC production and alteration of lipopolysaccharide composition enabled E. coli O157:H7 to escape PP01 infection. One of the escape mutants of E. coli O157:H7 which formed a mucoid colony (Mu) on Luria-Bertani agar appeared 56 h postincubation at a dilution rate of 0.867 h−1 and persisted until the end of the experiment (~200 h). Mu mutant cells could coexist with bacteriophage PP01 in batch culture. Concentrations of the Mu cells and bacteriophage PP01 increased together. The appearance of mutant phage, which showed a different host range among the O157:H7 escape mutants than wild-type PP01, was also detected in the chemostat culture. Thus, coevolution of phage and E. coli O157:H7 proceeded as a mutual arms race in chemostat continuous culture.  相似文献   
4.
Two proteins, a 56-kDa protein (p56) and a 58-kDa protein (p58), are produced from the hepatitis C virus (HCV) nonstructural region 5A (NS5A). Recently, we found that both proteins are phosphorylated at serine residues and that p58 is a hyperphosphorylated form of p56. Furthermore, hyper-phosphorylation depends on the production of an intact form of the HCV NS4A protein. To clarify the nature of NS5A phosphorylation, pulse-chase analysis was performed with a transient protein production system in cultured cells. The study indicated that basal and hyperphosphorylation of NS5A occurred after proteolytic production of NS5A was complete. In an attempt to identify the location of the hyperphosphorylation sites in p58, proteins with sequential deletions from the C-terminal region of NS5A and with mutations of possible phosphorylated serine residues to a neutral amino acid, alanine, were constructed. The deleted or mutated proteins were then tested for hyperphosphorylation in the presence of the NS4A product. Here, we report that serine residues 2197, 2201, and/or 2204 are important for hyper-phosphorylation. Important sites for basal phosphorylation were identified in the region from residues 2200 to 2250 and in the C-terminal region of the NS5A product. A subcellular localization study showed that most of the NS5A products were localized in the nuclear periplasmic membrane fraction.  相似文献   
5.
Hepatitis C virus proteins are produced by proteolytic processing of the viral precursor polyprotein that is encoded in the largest open reading frame of the viral genome. Processing of the nonstructural viral polyprotein requires the viral serine-type proteinase present in nonstructural protein 3 (NS3). The cleavage of the junction between NS4B and NS5A is mediated by NS3 only when NS4A is present. NS4A is thought to be a cofactor that enhances the cleavage efficiency of NS3 in hepatitis C virus protein-producing cells. Stable NS3-NS4A complex formation required the N-terminal 22 amino acid residues of NS3. This interaction contributed to stabilization of the NS3 product as well as increased the efficiency of cleavage at the NS4B/5A site. The N-terminal 22 amino acid residues fused to Escherichia coli dihydrofolate reductase also formed a stable complex with NS4A. NS3 derivatives which lacked the N-terminal 22 amino acid residues showed drastically reduced cleavage activity at the NS4B/5A site even in the presence of NS4A. These data suggested that the interaction with NS4A through the 22 amino acid residues of NS3 is primarily important for the NS4A-dependent processing of the NS4B/5A site by NS3.  相似文献   
6.
Two pepsinogens (pepsinogens 1 and 2) were purified from the esophageal mucosa of the bullfrog (Rana catesbeiana), and their molecular weights were determined to be 40,100 and 39,200, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The NH2-terminal 70-residue sequences of both pepsinogens are the same, including the 36-residue activation segment. Furthermore, a cDNA clone encoding frog pepsinogen was obtained and sequenced, which permitted deduction of the complete amino acid sequence (368 residues) of one of the pepsinogen isozymogens. The calculated molecular weight of the protein (40,034) coincided well with the values obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results are incompatible with the previous report (Shugerman R. P., Hirschowitz, B. I., Bhown, A. S., Schrohenloher, R. E., and Spenney, J. G. (1982) J. Biol. Chem. 257, 795-798) that the major pepsinogen isolated from the bullfrog esophageal gland is a unique "mini" pepsinogen with a molecular weight of approximately 32,000-34,000. The two pepsinogens were immunologically indistinguishable from each other and related to human pepsinogen C. The deduced amino acid sequence was also more homologous with those of pepsinogens C than those of pepsinogens A and prochymosin. These results indicate that the frog pepsinogens belong to the pepsinogen C group. They were both glycoproteins, and therefore, this is the first finding of carbohydrate-containing pepsinogens C. Both pepsinogens were activated to pepsins in the same manner by an apparent one-step mechanism. The resulting pepsins were enzymatically indistinguishable from each other, and their properties resembled those of tuna pepsins.  相似文献   
7.
8.
Notochord is an embryonic midline structure that serves as mechanical support for axis elongation and the signaling center for the surrounding tissues. Precursors of notochord are initially induced in the dorsal most mesoderm region in gastrulating embryo and separate from the surrounding mesoderm/endoderm tissue to form an elongated rod-like structure, suggesting that cell adhesion molecules may play an important role in this step. In Xenopus embryo, axial protocadherin (AXPC), an orthologue of mammalian Protocadherin-1 (PCDH1), is indispensable for the assembly and separation from the surrounding tissue of the notochord cells. However, the role of PCDH1 in mammalian notochord remains unknown. We herein report that PCDH1 is expressed in the notochord of mouse embryo and that PCDH1-deficient mice form notochord normally. First, we examined the temporal expression pattern of pcdh1 and found that pcdh1 mRNA was expressed from embryonic day (E) 7.5, prior to the stage when notochord cells detach from the surrounding endoderm tissue. Second, we found that PCDH1 protein is expressed in the notochord of mouse embryos in addition to the previously reported expression in endothelial cells. To further investigate the role of PCDH1 in embryonic development, we generated PCDH1-deficient mice using the CRISPR-Cas9 system. In PCDH1-deficient embryos, notochord formation and separation from the surrounding tissue were normal. Structure and marker gene expression of notochord were also unaffected by loss of PCDH1. Major vascular patterns in PCDH1-deficient embryo were essentially normal. These results suggest that PCDH1 is dispensable for notochord formation, including the tissue separation process, in mammalian embryos. We successfully identified the evolutionary conserved expression of PCDH1 in notochord, but its function may differ among species.  相似文献   
9.
It has recently been unveiled that a wide variety of microbial eukaryotes (protists) occur in chemosynthetic ecosystems, such as hydrothermal vents and methane seeps. However, there is little knowledge regarding protists associated with endemic animals inhabiting these environments. In the present study, utilizing PCR techniques, we detected fragments of the small subunit ribosomal RNA gene (SSU rRNA gene) from a particular protist from gill tissues of a significant fraction of the vesicomyid clams Calyptogena soyoae and C. okutanii complex and of the mussel Bathymodiolus platifrons and B. japonicus, all of which harbor chemosynthetic endosymbiont bacteria and dominate methane seeps in Sagami Bay, Japan. Based on the phylogeny of SSU rRNA gene, the organism in question was shown to belong to Alveolata. It is noteworthy that this protist did not affiliate with any known alveolate group, although being deeply branched within the lineage of Syndiniales, for which the monophyly was constantly recovered, but not robustly supported. In addition, the protist detected using PCR followed by sequencing was localized within gill epithelial cells of B. platifrons with whole‐mount fluorescence in situ hybridization. This protist may be an endoparasite or an endocommensal of Calyptogena spp. and Bathymodiolus spp., and possibly have physiological and ecological impacts on these bivalves.  相似文献   
10.
Previously we demonstrated that inhibition of replication-associated protein (Rep) binding to its replication origin by artificial zinc-finger proteins (AZPs) is a powerful method to prevent plant virus infection in vivo. In the present study, we applied the AZP technology to Tomato yellow leaf curl virus (TYLCV), which is a limiting factor in tomato cultivation worldwide. First, we determined 5′-ATCGGTGT ATCGGTGT-3′ in the 195-bp intergenic region of the TYLCV-Israel strain, a strain reported first among TYLCV strains, as the Rep-binding site by gel shift assays. We then constructed a 6-finger AZP that bound to a 19-bp DNA including the Rep-binding site. We demonstrated that the binding affinity of the AZP was >1,000-fold greater than that of Rep and that the AZP inhibited Rep binding completely in vitro. Because the binding capability of the AZP was same as that of the AZP previously designed for geminivirus-resistant Arabidopsis thaliana, we predict that the present AZP will prevent TYLCV infection in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号