首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有35条查询结果,搜索用时 265 毫秒
1.
Despite the recent advances in the treatment of multiple myeloma (MM), MM patients with high-risk cytogenetic changes such as t(4;14) translocation or deletion of chromosome 17 still have extremely poor prognoses. With the goal of helping these high-risk MM patients, we previously developed a novel phthalimide derivative, TC11. Here we report the further characterization of TC11 including anti-myeloma effects in vitro and in vivo, a pharmacokinetic study in mice, and anti-osteoclastogenic activity. Intraperitoneal injections of TC11 significantly delayed the growth of subcutaneous tumors in human myeloma-bearing SCID mice. Immunohistochemical analyses showed that TC11 induced apoptosis of MM cells in vivo. In the pharmacokinetic analyses, the Cmax was 2.1 μM at 1 h after the injection of TC11, with 1.2 h as the half-life. TC11 significantly inhibited the differentiation and function of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated osteoclasts in mouse osteoclast cultures using M-CSF and RANKL. We also revealed that TC11 induced the apoptosis of myeloma cells accompanied by α-tubulin fragmentation. In addition, TC11 and lenalidomide, another phthalimide derivative, directly bound to nucleophosmin 1 (NPM1), whose role in MM is unknown. Thus, through multiple molecular interactions, TC11 is a potentially effective drug for high-risk MM patients with bone lesions. The present results suggest the possibility of the further development of novel thalidomide derivatives by drug designing.  相似文献   
2.
trans -Golgi network (TGN), and the changes in its structure and behavior throughout the cell cycle of a unicellular green alga, Botryococcus braunii, were examined with deep-etching replicas and in cryo-fixed/freeze-substituted specimens. In interphase cells, the TGN consisted of a hemispherically shaped cisterna (TGN-cisterna) with regularly distributed pores on the surface and a tubular network (TGN-tubules) with clathrin-coated vesicles. The TGNs changed their structure drastically throughout the cell cycle. The TGN-cisterna disappeared from the beginning of nuclear division to the completion of the cell wall, in contrast that TGN-tubules with the clathrin-coated vesicles were always observed. The TGN-tubules produced at least five other kinds of vesicles depending on the stage of the cell cycle: 200-nm vesicles with fibrillar substances and multivesicular bodies in interphase, 180–240 nm vesicles during cell division, and 400–450 nm vesicles containing fibrils and small masses of electron-dense substances, and 200-nm vesicles containing electron-dense spherical substances just after cell division. During cell wall formation, TGN-tubules were small and had only a few clathrin-coated vesicles. After cell wall formation, TGN-tubules grew and a TGN-cisterna with pores appeared again. Received 19 October 1998/ Accepted in revised form 1 March 1999  相似文献   
3.
We have isolated phytochrome B (phyB) and phyC mutants from rice (Oryza sativa) and have produced all combinations of double mutants. Seedlings of phyB and phyB phyC mutants exhibited a partial loss of sensitivity to continuous red light (Rc) but still showed significant deetiolation responses. The responses to Rc were completely canceled in phyA phyB double mutants. These results indicate that phyA and phyB act in a highly redundant manner to control deetiolation under Rc. Under continuous far-red light (FRc), phyA mutants showed partially impaired deetiolation, and phyA phyC double mutants showed no significant residual phytochrome responses, indicating that not only phyA but also phyC is involved in the photoperception of FRc in rice. Interestingly, the phyB phyC double mutant displayed clear R/FR reversibility in the pulse irradiation experiments, indicating that both phyA and phyB can mediate the low-fluence response for gene expression. Rice is a short-day plant, and we found that mutation in either phyB or phyC caused moderate early flowering under the long-day photoperiod, while monogenic phyA mutation had little effect on the flowering time. The phyA mutation, however, in combination with phyB or phyC mutation caused dramatic early flowering.  相似文献   
4.
The grass Brachiaria brizantha, native to eastern Africa, becomes naturalized and dominant quickly in the non-native areas. It was hypothesized that phytotoxic chemical interaction between this plant and native plants may play an important role in the invasion of B. brizantha. However, no potent phytotoxic substance has been reported in this species. Therefore, we investigated possible allelopathic activity and searched for phytotoxic substances with allelopathic activity in B. brizantha. An aqueous methanol extract of B. brizantha inhibited the growth of roots and shoots of garden cress (Lepidium sativum), lettuce (Lactuca sativa), timothy (Phleum pratense) and ryegrass (Lolium multiflorum) seedlings. The extract was purified by several chromatographic runs and three allelopathically active substances were isolated and identified by spectral analysis as (6R,9R)-3-oxo-α-ionol, (6R,9S)-3-oxo-α-ionol and 4-ketopinoresinol. (6R,9R)-3-Oxo-α-ionol and (6R,9S)-3-oxo-α-ionol inhibited root and shoot growth of garden cress at concentrations greater than 30 and 10 μM, respectively. The activity of (6R,9S)-3-oxo-α-ionol was 5.3- to 6.2-fold that of (6R,9R)-3-oxo-α-ionol. The stereochemistry of the hydroxyl group at position C-9 may be important for the inhibitory activities of those compounds. 4-Ketopinoresinol inhibited root and shoot growth of garden cress at concentrations greater than 30 μM. The growth inhibitory activity of (6R,9S)-3-oxo-α-ionol was the greatest and followed by 4-ketopinoresinol and (6R,9R)-3-oxo-α-ionol. These results suggest that those phytotoxic substances may contribute to the allelopathic effect caused by B. brizantha and may be involved in the invasion of B. brizantha.  相似文献   
5.
Despite the introduction of newly developed drugs such as lenalidomide and bortezomib, patients with multiple myeloma are still difficult to treat and have a poor prognosis. In order to find novel drugs that are effective for multiple myeloma, we tested the antitumor activity of 29 phthalimide derivatives against several multiple myeloma cell lines. Among these derivatives, 2-(2,6-diisopropylphenyl)-5-amino-1H-isoindole-1,3- dione (TC11) was found to be a potent inhibitor of tumor cell proliferation and an inducer of apoptosis via activation of caspase-3, 8 and 9. This compound also showed in vivo activity against multiple myeloma cell line KMS34 tumor xenografts in ICR/SCID mice. By means of mRNA display selection on a microfluidic chip, the target protein of TC11 was identified as nucleophosmin 1 (NPM). Binding of TC11 and NPM monomer was confirmed by surface plasmon resonance. Immunofluorescence and NPM knockdown studies in HeLa cells suggested that TC11 inhibits centrosomal clustering by inhibiting the centrosomal-regulatory function of NPM, thereby inducing multipolar mitotic cells, which undergo apoptosis. NPM may become a novel target for development of antitumor drugs active against multiple myeloma.  相似文献   
6.
The major triterpenoids in both the female and male flowers of Alnus sieboldiana are a C31-secodammarane-type, alnustic acid, and its 12-O-α-L-arbinofuranoside and 12-O-β-D-xylopyranoside.  相似文献   
7.
Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1‐1 and pyp1‐2, that have reduced yellow color intensity in the petals and anthers due to loss‐of‐function mutations. Carotenoid analyses showed that the yellow flower organs of wild‐type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next‐generation sequencing coupled with map‐based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery.  相似文献   
8.
The invasion ability of Listeria monocytogenes into cultured cells has been used to evaluate its pathogenicity. In this study, invasive ability was investigated using Vero and Caco-2 cell lines. The form of invasion showed no morphological differences between both cell lines inoculated with L. monocytogenes L89-H2 or L96-23C1 strains when double fluorescence stained with rhodamine and FITC or with Giemsa staining. Recovery count and recovery rate of L. monocytogenes from Vero cells was related to the number of inoculated bacteria (2 x 10(5) to 2 x 10(7)/ml) in a bell-shape pattern, though the relationship was unclear in Caco-2 cells. Recovery rate of L. monocytogenes was higher in Vero cells than Caco-2 cells at a multiplicity of infection (MOI) 10, though the rates in both cells showed different stable stages over a considerably wide range of MOI. The recovery rate of all five L. monocytogenes strains from listeriosis patients was 15% at MOI 10 from infected Vero cells, while meat-derived strains showed variable rates regardless of the serovar. These results suggest that the Vero cell line is suitable for an invasion assay and that a recovery rate of 15% may be the critical limit for the expression of pathogenicity in the host.  相似文献   
9.

Background

Left ventricular noncompaction (LVNC) is a cardiomyopathy characterized by a prominent trabecular meshwork and deep intertrabecular recesses, and is thought to be due to an arrest of normal endomyocardial morphogenesis. However, the genes contributing to this process remain poorly understood. 14-3-3ε, encoded by YWHAE, is an adapter protein belonging to the 14-3-3 protein family which plays important roles in neuronal development and is involved in Miller–Dieker syndrome. We recently showed that mice lacking this gene develop LVNC. Therefore, we hypothesized that variants in YWHAE may contribute to the pathophysiology of LVNC in humans.

Methods and results

In 77 Japanese patients with LVNC, including the probands of 29 families, mutation analysis of YWHAE by direct DNA sequencing identified 7 novel variants. One of them, c.− 458G > T, in the YWHAE promoter, was identified in a familial patient with LVNC and hypoplasia of the corpus callosum. The − 458G > T variant is located within a regulatory CCAAT/enhancer binding protein (C/EBP) response element of the YWHAE promoter, and it reduced promoter activity by approximately 50%. Increased binding of an inhibitory C/EBPβ isoform was implicated in decreasing YWHAE promoter activity. Interestingly, we had previously shown that C/EBPβ is a key regulator of YWHAE.

Conclusions

These data suggest that the − 458G > T YWHAE variant contributes to the abnormal myocardial morphogenesis characteristic of LVNC as well as abnormal brain development, and implicate YWHAE as a novel candidate gene in pediatric cardiomyopathies.  相似文献   
10.
Etchuuya R  Ito M  Kitano S  Shigi F  Sobue R  Maeda S 《PloS one》2011,6(1):e16355
Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ~9 kDa and ~30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5)-10(-6), suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号