首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   4篇
  53篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1991年   4篇
  1990年   1篇
  1983年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.

Background  

Micro-biological research relies on the use of model organisms that act as representatives of their species or subspecies, these are frequently well-characterized laboratory strains. However, it has often become apparent that the model strain initially chosen does not represent important features of the species. For micro-organisms, the diversity of their genomes is such that even the best possible choice of initial strain for sequencing may not assure that the genome obtained adequately represents the species. To acquire information about a species' genome as efficiently as possible, we require a method to choose strains for analysis on the basis of how well they represent the species.  相似文献   
2.
The accumulation of [3H]inositol by mechanically dissociated brain cells and cultured skin fibroblasts from fetal mice was examined. Uptake by both tissues was strongly dependent on temperature and the presence of sodium ions. Brain and fibroblast uptake also responded similarly to inhibition by inositol isomers and phloridzin. At lower concentrations of inositol, both tissues exhibited high-affinity uptake kinetics with apparent Km values near 30 M, similar to values observed previously in human fibroblasts and other cultured cells. The activity of brain high-affinity uptake was nearly an order of magnitude lower than that of fibroblasts, however, and was in part confounded by the presence of a low-affinity or simple diffusion system operating at inositol concentrations above 100M. Brain preparation from adult mice also showed evidence of high-affinity, Na+ dependent uptake, but its activity was significantly diminished relative to that of fetal brain preparations. Our results demonstrate that a high-affinity inositol transport system closely resembling that found in cultured cells is expressed in the developing mouse brain.  相似文献   
3.
Different values have resulted in conflicts between anglers and conservation lobbies in the management of trout in South Africa. Key to the conflict is the demarcation of boundaries to areas in which brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss currently occur, or are likely to establish following stocking for angling. To provide a longer-term perspective on these areas, we developed models to link salmonid biological thermal thresholds to elevation. These, when applied spatially using a digital elevation model with a probability of occurrence model, provided the basis for estimating potentially available thermal habitat for these two cold water species. Here, we acknowledge that other variables (stocking history; river connectivity) also play a role in understanding trout distributions. Using a simple scenario of an increase in mean daily water temperatures of 2 °C, we demonstrated that both brown and rainbow trout are likely to exhibit considerable range reductions in the future. Because it is possible that these range restrictions will result in an increasing desire to introduce trout into areas above their current distribution limits for the maintenance of angling opportunities, conservation managers should prioritise these areas, with management interventions seeking to understand what will help to limit introductions.  相似文献   
4.
1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll‐a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top‐down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top‐down control of phytoplankton by zooplankton grazers.  相似文献   
5.
Inorganic phosphate(Pi) accumulates in the fibers of actively working musclewhere it acts at various sites to modulate contraction. To characterizethe role of Pi as a regulator of the sarcoplasmic reticulum(SR) calcium (Ca2+) release channel, we examined the actionof Pi on purified SR Ca2+ release channels,isolated SR vesicles, and skinned skeletal muscle fibers. In singlechannel studies, addition of Pi to the cis chamberincreased single channel open probability (Po;0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mMPi) by decreasing mean channel closed time; mean channelopen times were unaffected. In contrast, the ATP analog,,-methyleneadenosine 5'-triphosphate (AMP-PCP), enhancedPo by increasing single channel open time anddecreasing channel closed time. Pi stimulation of[3H]ryanodine binding by SR vesicles wassimilar at all concentrations of AMP-PCP, suggesting Pi andadenine nucleotides act via independent sites. In skinned musclefibers, 40 mM Pi enhanced Ca2+-inducedCa2+ release, suggesting an in situ stimulation ofthe release channel by high concentrations of Pi. Ourresults support the hypothesis that Pi may be an importantendogenous modulator of the skeletal muscle SR Ca2+ releasechannel under fatiguing conditions in vivo, acting via a mechanismdistinct from adenine nucleotides.

  相似文献   
6.
Naturally occurring mutations in the skeletal muscle Ca(2+) release channel/ryanodine receptor RyR1 are linked to malignant hyperthermia (MH), a life-threatening complication of general anesthesia. Although it has long been recognized that MH results from uncontrolled or spontaneous Ca(2+) release from the sarcoplasmic reticulum, how MH RyR1 mutations render the sarcoplasmic reticulum susceptible to volatile anesthetic-induced spontaneous Ca(2+) release is unclear. Here we investigated the impact of the porcine MH mutation, R615C, the human equivalent of which also causes MH, on the intrinsic properties of the RyR1 channel and the propensity for spontaneous Ca(2+) release during store Ca(2+) overload, a process we refer to as store overload-induced Ca(2+) release (SOICR). Single channel analyses revealed that the R615C mutation markedly enhanced the luminal Ca(2+) activation of RyR1. Moreover, HEK293 cells expressing the R615C mutant displayed a reduced threshold for SOICR compared with cells expressing wild type RyR1. Furthermore, the MH-triggering agent, halothane, potentiated the response of RyR1 to luminal Ca(2+) and SOICR. Conversely, dantrolene, an effective treatment for MH, suppressed SOICR in HEK293 cells expressing the R615C mutant, but not in cells expressing an RyR2 mutant. These data suggest that the R615C mutation confers MH susceptibility by reducing the threshold for luminal Ca(2+) activation and SOICR, whereas volatile anesthetics trigger MH by further reducing the threshold, and dantrolene suppresses MH by increasing the SOICR threshold. Together, our data support a view in which altered luminal Ca(2+) regulation of RyR1 represents a primary causal mechanism of MH.  相似文献   
7.
Mucin-type O-glycosylation is initiated by a large family of UDP- GalNAc: polypeptide N -acetyl-galactosaminyltransferases (GalNAc- transferases). Individual GalNAc-transferases appear to have different functions and Northern analysis indicates that they are differently expressed in different organs. This suggests that O-glycosylation may vary with the repertoire of GalNAc-transferases expressed in a given cell. In order to study the repertoire of GalNAc-transferases in situ in tissues and changes in tumors, we have generated a panel of monoclonal antibodies (MAbs) with well defined specificity for human GalNAc-T1, -T2, and -T3. Application of this panel of novel antibodies revealed that GalNAc- transferases are differentially expressed in different cell lines, in spermatozoa, and in oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc-T3 but not GalNAc-T1 or -T2 was expressed in spermatozoa. The expression patterns in normal oral mucosa were found to vary with cell differentiation, and for GalNAc-T2 and -T3 this was reflected in oral squamous cell carcinomas. The expression pattern of GalNAc-T1 was on the other hand changed in tumors to either total loss or expression in cytological poorly differentiated tumor cells, where the normal undifferentiated cells lacked expression. These results demonstrate that the repertoire of GalNAc-transferases is different in different cell types and vary with cellular differentiation, and malignant transformation. The implication of this is not yet fully understood, but it suggests that specific changes in sites of O-glycosylation of proteins may occur as a result of changes in the repertoire of GalNAc-transferases.   相似文献   
8.
Calmodulin (CaM) binds to the skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1) with high affinity, and it may act as a Ca(2+)-sensing subunit of the channel. Apo-CaM increases RyR1 channel activity, but Ca(2+)-CaM is inhibitory. Here we examine the functional effects of CaM oxidation on RyR1 regulation by both apo-CaM and Ca(2+)-CaM, as assessed via determinations of [(3)H]ryanodine and [(35)S]CaM binding to skeletal muscle sarcoplasmic reticulum vesicles. Oxidation of all nine CaM Met residues abolished functional interactions of CaM with RyR1. Incomplete CaM oxidation, affecting 5-8 Met residues, increased the CaM concentration required to modulate RyR1, having a greater effect on the apo-CaM species. Mutating individual CaM Met residues to Gln demonstrated that Met-109 was required for apo-CaM activation of RyR1 but not for Ca(2+)-CaM inhibition of the channel. Furthermore, substitution of Gln for Met-124 increased the apo- and Ca(2+)-CaM concentrations required to regulate RyR1. These results thus identify Met residues critical for the productive association of CaM with RyR1 channels and suggest that oxidation of CaM may contribute to altered regulation of sarcoplasmic reticulum Ca(2+) release during oxidative stress.  相似文献   
9.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   
10.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号