首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   7篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1983年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
We studied whether information required for export is present within the mature form of the Escherichia coli 325-residue outer membrane protein OmpA. We had previously analyzed overlapping internal deletions in the ompA gene, and the results allowed us to conclude that if such information exists it must be present repeatedly within the membrane part of the protein encompassing amino acid residues 1 to 177 (R. Freudl, H. Schwarz, M. Klose, N. R. Movva, and U. Henning, EMBO J. 4:3593-3598, 1985). A deletion which removed the codons for amino acid residues 1 to 229 of the OmpA protein was constructed. In this construct the signal sequence was fused to the periplasmic part of the protein. The resulting protein, designated Pro-OmpA delta 1-229, was processed, and the mature 95-residue protein accumulated in the periplasm. Hence, information required for export does not exist within the OmpA protein.  相似文献   
2.
The ompA gene codes for a 346 residue precursor of a 325 residue protein of the outer membrane of Escherichia coli K-12. Internally and/or COOH-terminally deleted genes were constructed that encode 123, 116, 88, 72 or 68 residue precursors. The former three were processed and localized to the periplasmic space; the latter two were not processed and remained cytosolic. These data suggest that the signal sequence has to interact with a component of the export apparatus (the Sec pathway) before translation is finished. Comparison of these results with others obtained for prokaryotic and eukaryotic systems shows that: (1) a very similar lower size limit exists for membrane translocation of the 147 residue chicken prelysozyme or the 229 residue bovine preprolactin; (2) precursors smaller than those reported here can be translocated in both systems; (3) the latter translocation, in contrast to, for example, the ompA gene products, does not depend on the cellular export machinery but most likely requires folding of the precursors into an export-competent conformation. In general, at least two quite different, not necessarily mutually exclusive, mechanisms for translocation of a protein across or assembly into a membrane appear to exist.  相似文献   
3.
The translocation of secretory proteins derived from a Gram-positive (Staphylococcus hyicus prolipase) or a Gram-negative (Escherichia coli pre-OmpA protein) bacterium across the cytoplasmic membrane was studied in E. coli and Bacillus subtilis. in both microorganisms, the prolipase was found to be secreted across the plasma membrane when either the pre-prolipase signal peptide (38 amino acids in length) or the pre-OmpA signal peptide (21 amino acids in length) was used. Expression of the gene encoding the authentic pre-OmpA protein in B. subtilis resulted in the translocation of mature OmpA protein across the plasma membrane. Processing of the OmpA precursor in B. subtilis required the electrochemical potential and was sensitive to sodium azide, suggesting that the B. subtilis SecA homologue was involved in the translocation process. The mature OmpA protein, which was most likely present in an aggregated state, was fully accessible to proteases in protoplasted cells. Therefore, our results clearly demonstrate that an outer membrane protein can be secreted by B. subtilis, supporting the notion that the basic mechanism of protein translocation is highly conserved in Gram-positive and Gram-negative bacteria.  相似文献   
4.
SecA is the precursor protein binding subunit of the bacterial precursor protein translocase, which consists of the SecY/E protein as integral membrane domain. SecA is an ATPase, and couples the hydrolysis of ATP to the release of bound precursor proteins to allow their proton-motive-force-driven translocation across the cytoplasmic membrane. A putative ATP-binding motif can be predicted from the amino acid sequence of SecA with homology to the consensus Walker A-type motif. The role of this domain is not known. A lysine residue at position 106 at the end of the glycine-rich loop in the A motif of the Bacillus subtilis SecA was replaced by an asparagine through site-directed mutagenesis (K106N SecA). A similar replacement was introduced at an adjacent lysine residue at position 101 (K101N SecA). Wild-type and mutant SecA proteins were expressed to a high level and purified to homogeneity. The catalytic efficacy (kcat/km) of the K106N SecA for lipid-stimulated ATP hydrolysis was only 1% of that of the wild-type and K101N SecA. K106N SecA retained the ability to bind ATP, but its ATPase activity was not stimulated by precursor proteins. Mutant and wild-type SecA bind with similar affinity to Escherichia coli inner membrane vesicles and insert into a phospholipid mono-layer, in contrast to the wild type, membrane insertion of the K106N SecA was not prevented by ATP. K106N SecA blocks the ATP and proton-motive-force-dependent chase of a translocation intermediate to fully translocated proOmpA. It is concluded that the GKT motif in the amino-terminal domain of SecA is part of the catalytic ATP-binding site. This site may be involved in the ATP-driven protein recycling function of SecA which allows the release of SecA from its association with precursor proteins, and the phospholipid bilayer.  相似文献   
5.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   
6.
Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.The secretory expression of recombinant proteins can offer significant process advantages over cytosolic production strategies, since secretion into the growth medium greatly facilitates downstream processing and therefore can significantly reduce the costs of producing a desired target protein (Quax, 1997). And, in fact, the enormous secretion capacity of certain Gram-positive bacteria (e.g. various Bacillus species) has been used since many years in industry for the production of mainly host-derived secretory proteins such as proteases and amylases, resulting in amounts of more than 20 g l−1 culture medium (Harwood and Cranenburg, 2008). In contrast, attempts to use Bacillus species for the secretory production of heterologous proteins have often failed or led to disappointing results, a fact that, among other reasons, could in many cases be attributed to the presence of multiple cell wall-associated and secreted proteases that rapidly degraded the heterologous target proteins (Li et al., 2004; Sarvas et al., 2004; Westers et al., 2011). Therefore, an increasing need exists to explore alternative host systems with respect to their ability to express and secrete problematic and/or complex heterologous proteins of biotechnological interest.So far, the Gram-positive bacterium Corynebacterium glutamicum has been used in industry mainly for the production of amino acids and other low-molecular weight compounds (Leuchtenberger et al., 2005; Becker and Wittmann, 2011; Litsanov et al., 2012). However, various recent reports have indicated that C. glutamicum might likewise possess a great potential as an alternative host system for the secretory expression of foreign proteins. Corynebacterium glutamicum belongs to a class of diderm Gram-positive bacteria that, besides the cytoplasmic membrane, possess an additional mycolic acid-containing outer membrane-like structure that acts as an extremely efficient permeability barrier for hydrophilic compounds (Hoffmann et al., 2008; Zuber et al., 2008). Despite this fact, an efficient secretion of various heterologous proteins into the growth medium of this microorganism has been observed (e.g. Billman-Jacobe et al., 1995; Meissner et al., 2007; Kikuchi et al., 2009; Tateno et al., 2009; Tsuchidate et al., 2011).In bacteria, two major export pathways exist for the transport of proteins across the cytoplasmic membrane that fundamentally differ with respect to the folding status of their respective substrate proteins during the actual translocation step. The general secretion (Sec) system transports its substrates in a more or less unfolded state and folding takes places on the trans side of the membrane after the actual transport event (Yuan et al., 2010; du Plessis et al., 2011). In contrast, the alternative twin-arginine translocation (Tat) system translocates its substrates in a fully folded form and therefore provides an attractive alternative for the secretory production of proteins that cannot be produced in a functional form via the Sec route (Brüser, 2007). Carbohydrate oxidases are biotechnologically interesting enzymes (van Hellemond et al., 2006) that are excluded from Sec-dependent secretion since they depend on a tightly or covalently bound cofactor for their activity and, for this reason, require that their folding and cofactor insertion has to take place in the cytosol. Because C. glutamicum has shown to be an excellent host for the Tat-dependent secretion of the cofactor-less model protein GFP (Meissner et al., 2007; Teramoto et al., 2011), we now asked whether it is likewise possible to secrete a cofactor-containing enzyme into the supernatant of C. glutamicum using the same protein export route.As a model protein, we chose the sorbitol–xylitol oxidase (SoXy) from Streptomyces coelicolor, a normally cytosolic enzyme that possesses a covalently bound FAD molecule as cofactor (Heuts et al., 2007; Forneris et al., 2008). FAD is incorporated into the apoprotein in a post-translational and self-catalytic process that only occurs if the polypeptide chain has adopted a correctly folded structure (Heuts et al., 2007; 2009). To direct SoXy into the Tat export pathway of C. glutamicum, we constructed a gene encoding a TorA–SoXy hybrid precursor in which SoXy is fused to the strictly Tat-specific signal peptide of the periplasmic Escherichia coli Tat substrate trimethylamine N-oxide reductase (TorA) (Fig. 1) which, in our previous study, has been proven to be a functional and strictly Tat-specific signal peptide also in C. glutamicum (Meissner et al., 2007). The corresponding torAsoxy gene was cloned into the expression vector pEKEx2 (Eikmanns et al., 1991) under the control of an IPTG-inducible Ptac promotor. After transformation of the resulting plasmid pTorA–SoXy into the C. glutamicum ATCC13032 wild-type strain, two independent colonies of the resulting recombinant C. glutamicum (pTorA–SoXy) strain and, as a control, a colony of a strain that contained the empty expression vector without insert [C. glutamicum (pEKEx2)] were grown in CGXII medium (Keilhauer et al., 1993) at 30°C for 16 h in the presence of 1 mM IPTG. Subsequently, the proteins present in the culture supernatants were analysed by SDS-PAGE followed by staining with Coomassie blue. As shown in Fig. 2, in the supernatants of the pTorA–SoXy-containing cells (lanes 3 and 4), a prominent protein band of approximately 44 kDa can be detected, the size of which is very similar to the calculated molecular mass (44.4 kDa) of SoXy. Since this band is completely lacking in the supernatant of the control strain (lane 2), this strongly suggests that this band corresponds to SoXy that has been secreted into the culture supernatant of C. glutamicum (pTorA–SoXy). And, in fact, this suggestion was subsequently confirmed in a direct way by MALDI-TOF mass spectrometry after extraction of the protein out of the gel followed by tryptic digestion (Schaffer et al., 2001) (data not shown).Open in a separate windowFigure 1The TorA–SoXy hybrid precursor protein. Upper part: Schematic drawing of the relevant part of the pTorA–SoXy expression vector. Ptac, IPTG-inducible tac promotor. RBS, ribosome binding site. To maintain the authentic TorA signal peptidase cleavage site, the first four amino acids of the mature TorA protein (black bar) were retained in the TorA–SoXy fusion protein. White bar: TorA signal peptide (TorASP); grey bar: SoXy (amino acids 2–418). Lower part: Amino acid sequence of the signal peptide and early mature region of the TorA–SoXy hybrid precursor. The twin-arginine consensus motif of the TorA signal peptide is underlined. The four amino acids derived from mature TorA are shown in italics. The signal peptidase cleavage site is indicated by an arrowhead.Open in a separate windowFigure 2Secretion of SoXy into the growth medium of C. glutamicum. Cells of C. glutamicum ATCC13032 containing the empty vector pEKEx2 and two independently transformed colonies of C. glutamicum (pTorA–SoXy) were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with CGXII medium (Keilhauer et al., 1993) and inoculated to an OD600 of 0.5 in 5 ml of fresh CGXII medium containing 1 mM IPTG. After 16 h of further growth at 30°C, the supernatant fractions were prepared as described previously (Meissner et al., 2007). Samples corresponding to an equal number of cells were subjected to SDS-PAGE followed by staining with Coomassie blue. Lane 1, molecular mass marker (kDa). Lane 2, C. glutamicum (pEKEx2); lanes 3 and 4, C. glutamicum (pTorA–SoXy). The position of the secreted SoXy protein is indicated by an arrow.Next, the supernatant of C. glutamicum (pTorA–SoXy) was analysed for SoXy enzyme activity by measuring the production of H2O2 that is formed during the enzymatic conversion of sorbitol to fructose (Meiattini, 1983). Six hours after induction of gene expression by 1 mM IPTG, an enzymatic activity of 10.3 ± 1.6 nmol min−1 ml−1 could be determined in the supernatant of C. glutamicum (pTorA–SoXy). In contrast, no such activity was found in the supernatant of the control strain C. glutamicum (pEKEx2). From these results we conclude that we have succeeded in the secretion of enzymatically active and therefore FAD cofactor-containing SoXy into the culture supernatant of C. glutamicum.Finally, we examined whether the secretion of SoXy had in fact occurred via the Tat pathway of C. glutamicum. Plasmid pTorA–SoXy was used to transform C. glutamcium ATCC13032 wild type and a C. glutamicum ΔTatAC mutant strain that lacks two essential components of the Tat transport machinery and therefore does not possess a functional Tat translocase (Meissner et al., 2007). The corresponding cells were grown in BHI medium (Difco) at 30°C in the presence of 1 mM IPTG for 6 h. Subsequently, the proteins present in the cellular and the supernatant fractions of the corresponding cells were analysed by SDS-PAGE followed by Western blotting using SoXy-specific antibodies. As shown in Fig. 3, polypeptides corresponding to the unprocessed TorA–SoXy precursor and some minor smaller degradation products of it can be detected in the cellular fractions of both the wild-type and the ΔTatAC deletion strains (lanes 3 and 5). In the supernatant fraction of the Tat+ wild-type strain (lane 4), but not that of the ΔTatAC strain (lane 6), a polypeptide corresponding to mature SoXy is present, clearly showing that export of SoXy in the wild-type strain had occurred in a strictly Tat-dependent manner. Another noteworthy finding is the observation that hardly any mature SoXy protein accumulated in the cellular fraction of the Tat+ wild-type strain (lane 3), indicating that SoXy is, after its Tat-dependent translocation across the cytoplasmic membrane and processing by signal peptidase, rapidly transported out of the intermembrane space across the mycolic acid-containing outer membrane into the supernatant. However, the mechanism of how proteins cross this additional permeability barrier is completely unknown so far (Bitter et al., 2009).Open in a separate windowFigure 3Transport of TorA–SoXy occurs in a strictly Tat-dependent manner. Plasmid pTorA–SoXy was transformed into C. glutamcium ATCC13032 (Tat+) and a C. glutamicum ΔTatAC mutant that lacks a functional Tat translocase (Meissner et al., 2007). As a control, the empty pEKEx2 expression vector was transformed into C. glutamicum ATCC13032 (Tat+). The respective strains were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with BHI and resuspended in 20 ml of fresh BHI medium containing 1 mM IPTG. After 6 h of further growth at 30°C, the cellular (C) and supernatant (S) fractions were prepared as described previously (Meissner et al., 2007). Samples of the C and S fractions were subjected to SDS-PAGE followed by immunoblotting using anti-SoXy antibodies as indicated at the top of the figure. Lanes 1 and 2: C. glutamicum ATCC13032 (pEKEx2); lanes 3 and 4: C. glutamicum ATCC13032 (pTorA–SoXy); lanes 5 and 6: C. glutamicum ΔTatAC (pTorA–SoXy). Asterisk: TorA–SoXy precursor; arrow: secreted SoXy protein. The positions of molecular mass markers (kDa) are indicated at the left margin of the figure.To the best of our knowledge, our results represent the first documented example of the successful secretion of a normally cytosolic, cofactor-containing protein via the Tat pathway in an active form into the culture supernatant of a recombinant expression host. Our results clearly show that, also for this biotechnologically very interesting class of proteins, a secretory production strategy can be a promising alternative to conventional intracellular expression strategies. Besides for SoXy and other FAD-containing carbohydrate oxidases, for which various applications are perceived by industry such as the in situ generation of hydrogen peroxide for bleaching and disinfection performance in technical applications, their use in the food and drink industry, as well as their use in diagnostic applications and carbohydrate biosynthesis processes (Oda and Hiraga, 1998; Murooka and Yamashita, 2001; van Hellemond et al., 2006; Heuts et al., 2007), a secretory production strategy might now be an attractive option also for biotechnologically relevant enzymes that are used as biocatalysts in chemo-enzymatic syntheses and that possess cofactors other than FAD, such as pyridoxal-5′-phosphate (PLP)-dependent ω-transaminases (Mathew and Yun, 2012) or various thiamin diphosphate (TDP)-dependent enzymes (Müller et al., 2009).  相似文献   
7.
In Corynebacterium glutamicum the LysE carrier protein exhibits the unique function of exporting L-lysine. We here analyze the membrane topology of LysE, a protein of 236 amino acyl residues, using PhoA- and LacZ-fusions. The amino-terminal end of LysE is located in the cytoplasm whereas the carboxy-terminal end is found in the periplasm. Although 6 hydrophobic domains were identified based on hydropathy analyses, only five transmembrane spanning helices appear to be present. The additional hydrophobic segment may dip into the membrane or be surface localized. We show that LysE is a member of a family of proteins found, for example, in Escherichia coil, Bacillus subtilis, Mycobacterium tuberculosis and Helicobacter pylori. This family, which we have designated the LysE family, is distantly related to two additional protein families which we have designated the YahN and CadD families. These three families, the members of which exhibit similar sizes, hydropathy profiles, and sequence motifs comprise the LysE superfamily. Functionally characterized members of the LysE superfamily export L-lysine, cadmium and possibly quarternary amines. We suggest that LysE superfamily members will prove to catalyze export of a variety of biologically important solutes.  相似文献   
8.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   
9.
In Escherichia coli, the Tat system promotes the membrane translocation of a subset of exported proteins across the cytoplasmic membrane. Four genes (tatA, tatB, tatC, and tatE) have been identified that encode the components of the E. coli Tat translocation apparatus. Whereas TatA and TatE can functionally substitute for each other, the TatB and the TatC proteins have been shown to perform distinct functions. In contrast to Tat systems of the ABC(E) type found in E. coli and many other bacteria, some microorganisms possess a TatAC-type translocase that consists of TatA and TatC only, suggesting that, in these systems, TatB is not required or that one of the remaining components (TatA or TatC) additionally takes over the TatB function. We have addressed the molecular basis for the difference in subunit composition between TatABC(E) and TatAC-type systems by using a genetic approach. A plasmid-encoded E. coli minimal Tat translocase consisting solely of TatA and TatC was shown to mediate a low level translocation of a sensitive Tat-dependent reporter protein. Suppressor mutations in the minimal Tat translocase were isolated that compensate for the absence of TatB and that showed substantial increases in translocation activities. All of the mutations mapped to the extreme amino-terminal domain of TatA. No mutations affecting TatC were identified. These results suggest that in TatAC-type systems, the TatA protein represents a bifunctional component fulfilling both the TatA and TatB functions. Furthermore, our results indicate that the structure of the amino-terminal domain of TatA is decisive for whether or not TatB is required.  相似文献   
10.
Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of disulfide bonds that is the greatest bottleneck. Degradation of inefficiently or incorrectly oxidized proteins and the requirement for costly and time-consuming reduction and oxidation steps in the downstream processing of the proteins still are major limitations for full exploitation of B. subtilis for biopharmaceutical production. Therefore, the present study was aimed at developing a novel in vivo strategy for improved production of secreted disulfide-bond-containing proteins. Three approaches were tested: depletion of the major cytoplasmic reductase TrxA; introduction of the heterologous oxidase DsbA from Staphylococcus carnosus; and addition of redox-active compounds to the growth medium. As shown using the disulfide-bond-containing molecule Escherichia coli PhoA as a model protein, combined use of these three approaches resulted in secretion of amounts of active PhoA that were approximately 3.5-fold larger than the amounts secreted by the parental strain B. subtilis 168. Our findings indicate that Bacillus strains with improved oxidizing properties can be engineered for biotechnological production of heterologous high-value proteins containing disulfide bonds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号