首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2015年   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
Ecosystems - Decomposition of dead fine roots contributes significantly to nutrient cycling and soil organic matter stabilization. Most knowledge of tree fine-root decomposition stems from studies...  相似文献   
2.
3.

Questions

Mycorrhizae may be a key element of plant nutritional strategies and of carbon and nutrient cycling. Recent research suggests that in natural conditions, intensity of mycorrhizal colonization should be considered an important plant feature. How are inter‐specific variations in mycorrhizal colonization rate, plant relative growth rate (RGR ) and leaf litter decomposability related? Is (arbuscular) mycorrhizal colonization linked to the dominance of plant species in nutrient‐stressed ecosystems?

Location

Teberda State Biosphere Reserve, northwest Caucasus, Russia.

Methods

We measured plant RGR under mycorrhizal limitation and under natural nutrition conditions, together with leaf litter decomposability and field intensity of mycorrhizal colonization across a wide range of plant species, typical for alpine communities of European mountains. We applied regression analysis to test whether the intensity of mycorrhizal colonization is a good predictor of RGR and decomposition rate, and tested how these traits predict plant dominance in communities.

Results

Forb species with a high level of field mycorrhizal colonization had lower RGR under nutritional and mycorrhizal limitation, while grasses were unaffected. Litter decomposition rate was not related to the intensity of mycorrhizal colonization. Dominant species mostly had a higher level of mycorrhizal colonization and lower RGR without mycorrhizal colonization than subordinate species, implying that they were more dependent on mycorrhizal symbionts. There were no differences in litter decomposability.

Conclusions

In alpine herbaceous plant communities dominated by arbuscular mycorrhizae, nutrient dynamics are to a large extent controlled by mycorrhizal symbiosis. Intensity of mycorrhizal colonization is a negative predictor for whole plant RGR . Our study highlights the importance of mycorrhizal colonization as a key trait underpinning the role of plant species in carbon and nutrient dynamics in nutrient‐limited herbaceous plant communities.
  相似文献   
4.
The quantitative contribution of tropical estuaries to the atmospheric CO2 budget has large uncertainties, both spatially and seasonally. We investigated the seasonal and spatial variations of carbon biogeochemistry downstream of Ho Chi Minh City (Southern Vietnam). We sampled four sites distributed from downstream of a highly urbanised watershed through mangroves to the South China Sea coast during the dry and wet seasons. Measured partial pressure of CO2 (pCO2) ranged from 660 to 3000 μatm during the dry season, and from 740 to 5000 μatm during the wet season. High organic load, dissolved oxygen saturation down to 17%, and pCO2 up to 5000 μatm at the freshwater endmember of the estuary reflected the intense human pressure on this ecosystem. We show that releases from mangrove soils affect the water column pCO2 in this large tropical estuary (~600 m wide and 10–20 m deep). This study is among the few to report direct measurements of both water pCO2 and CO2 emissions in a Southeast Asian tropical estuary located in a highly urbanised watershed. It shows that the contribution of such estuaries may have been previously underestimated, with CO2 emissions ranging from 74 to 876 mmol m?2 day?1 at low current velocity (< 0.2 m s?1). Corresponding gas transfer velocities k600, ranging from 1.7 to 11.0 m day?1, were about 2 to 4 times of k600 estimated using published literature equations.  相似文献   
5.
Andrew Siefert  Cyrille Violle  Loïc Chalmandrier  Cécile H. Albert  Adrien Taudiere  Alex Fajardo  Lonnie W. Aarssen  Christopher Baraloto  Marcos B. Carlucci  Marcus V. Cianciaruso  Vinícius de L. Dantas  Francesco de Bello  Leandro D. S. Duarte  Carlos R. Fonseca  Grégoire T. Freschet  Stéphanie Gaucherand  Nicolas Gross  Kouki Hikosaka  Benjamin Jackson  Vincent Jung  Chiho Kamiyama  Masatoshi Katabuchi  Steven W. Kembel  Emilie Kichenin  Nathan J. B. Kraft  Anna Lagerström  Yoann Le Bagousse‐Pinguet  Yuanzhi Li  Norman Mason  Julie Messier  Tohru Nakashizuka  Jacob McC. Overton  Duane A. Peltzer  I. M. Pérez‐Ramos  Valério D. Pillar  Honor C. Prentice  Sarah Richardson  Takehiro Sasaki  Brandon S. Schamp  Christian Schöb  Bill Shipley  Maja Sundqvist  Martin T. Sykes  Marie Vandewalle  David A. Wardle 《Ecology letters》2015,18(12):1406-1419
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta‐analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole‐plant (e.g. plant height) vs. organ‐level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait‐based community and ecosystem studies.  相似文献   
6.
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual.  相似文献   
7.
The ‘home‐field advantage (HFA) hypothesis’ predicts that plant litter is decomposed faster than expected in the vicinity of the plant where it originates from (i.e. its ‘home’) relative to some other location (i.e. ‘away’) because of the presence of specialized decomposers. Despite growing evidence for the widespread occurrence HFA effects, what drives HFA is not understood as its strength appears highly variable and context‐dependent. Our work advances current knowledge about HFA effects by testing under what conditions HFA is most important. Using published data on mass loss from 125 reciprocal litter transplants from 35 studies, we evaluated if HFA effects were modulated by macroclimate, litter quality traits, and the dissimilarity between ‘home’ and ‘away’ of both the quality of reciprocally exchanged litters and plant community type. Our results confirmed the occurrence of an overall, worldwide, HFA effect on decomposition with on average 7.5% faster decomposition at home. However, there was considerable variation in the strength and direction (sometimes opposite to expectations) of these effects. While macroclimate and average litter quality had weak or no impact on HFA effects, home‐field effects became stronger (regardless of the direction) when the quality of ‘home’ and ‘away’ litters became more dissimilar (e.g. had a greater dissimilarity in N:P ratio; F1,42 = 6.39, p = 0.015). Further, home‐field effects were determined by the degree of difference between the types of dominant plant species in the ‘home’ versus ‘away’ communities (F2,105 = 4.03, p = 0.021). We conclude that home‐field advantage is not restricted to particular litter types or climate zones, and that the dissimilarity in plant communities and litter quality between the ‘home’ and ‘away’ locations, are the most significant drivers of home‐field effects.  相似文献   
8.
The importance of species richness to ecosystem functioning and services is a central tenet of biological conservation. However, most of our theory and mechanistic understanding is based on diversity found aboveground. Our study sought to better understand the relationship between diversity and belowground function by studying root biomass across a plant diversity gradient. We collected soil cores from 91 plots with between 1 and 12 aboveground tree species in three natural secondary forests to measure fine root (≤ 2 mm in diameter) biomass. Molecular methods were used to identify the tree species of fine roots and to estimate fine root biomass for each species. This study tested whether the spatial root partitioning (species differ by belowground territory) and symmetric growth (the capacity to colonize nutrient-rich hotspots) underpin the relationship between aboveground species richness and fine root biomass. All species preferred to grow in nutrient-rich areas and symmetric growth could explain the positive relationship between aboveground species richness and fine root biomass. However, symmetric growth only appeared in the nutrient-rich upper soil layer (0–10 cm). Structural equation modelling indicated that aboveground species richness and stand density significantly affected fine root biomass. Specifically, fine root biomass depended on the interaction between aboveground species richness and stand density, with fine root biomass increasing with species richness at lower stand density, but not at higher stand density. Overall, evidence for spatial (i.e. vertical) root partitioning was inconsistent; assumingly any roots growing into deeper unexplored soil layers were not sufficient contributors to the positive diversity–function relationship. Alternatively, density-dependent biotic interactions affecting tree recruitment are an important driver affecting productivity in diverse subtropical forests but the usual root distribution patterns in line with the spatial root partitioning hypothesis are unrealistic in contexts where soil nutrients are heterogeneously distributed.  相似文献   
9.
Aim The drivers of species assembly, by limiting the possible range of functional trait values, can lead to either convergent or divergent distributions of traits in realized assemblages. Here, to evaluate the strengths of these species assembly drivers, we partition trait variance across global, regional and community scales. We then test the hypothesis that, from global to community scales, the outcome of co‐occurring trait convergence and divergence is highly variable across biomes and communities. Location Global: nine biomes ranging from subarctic highland to tropical rain forest. Methods We analysed functional trait diversity at progressively finer spatial scales using a global, balanced, hierarchically structured dataset from 9 biomes, 58 communities and 652 species. Analyses were based on two key leaf traits (foliar nitrogen content and specific leaf area) that are known to drive biogeochemical cycling. Results While 35% of the global variance in these traits was between biomes, only 15% was between communities within biomes and as much as 50% occurred within communities. Despite this relatively high within‐community variance in trait values, we found that trait convergence dominated over divergence at both global and regional scales through comparisons of functional trait diversity in regional and community assemblages against random (null) models of species assembly. Main conclusions We demonstrate that the convergence of traits occurring from global to regional assemblages can be twice as strong as that from regional to community assemblages, and argue that large differences in the nature and strength of abiotic and biotic drivers of dominant species assembly can, at least partly, explain the variable outcome of simultaneous trait convergence and divergence across sites. Ultimately, these findings stress the urgent need to extend species assembly research to address those scales where trait variance is the highest, i.e. between biomes and within communities.  相似文献   
10.
G protein–coupled receptor-type G proteins (GTGs) are highly conserved membrane proteins in plants, animals, and fungi that have eight to nine predicted transmembrane domains. They have been classified as G protein–coupled receptor-type G proteins that function as abscisic acid (ABA) receptors in Arabidopsis thaliana. We cloned Arabidopsis GTG1 and GTG2 and isolated new T-DNA insertion alleles of GTG1 and GTG2 in both Wassilewskija and Columbia backgrounds. These gtg1 gtg2 double mutants show defects in fertility, hypocotyl and root growth, and responses to light and sugars. Histological studies of shoot tissue reveal cellular distortions that are particularly evident in the epidermal layer. Stable expression of GTG1pro:GTG1-GFP (for green fluorescent protein) in Arabidopsis and transient expression in tobacco (Nicotiana tabacum) indicate that GTG1 is localized primarily to Golgi bodies and to the endoplasmic reticulum. Microarray analysis comparing gene expression profiles in the wild type and double mutant revealed differences in expression of genes important for cell wall function, hormone response, and amino acid metabolism. The double mutants isolated here respond normally to ABA in seed germination assays, root growth inhibition, and gene expression analysis. These results are inconsistent with their proposed role as ABA receptors but demonstrate that GTGs are fundamentally important for plant growth and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号