首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1999年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The distribution characteristics of tritiated nucleoside analogs, 2-chloro-2′-deoxyadeonosine (CdA), 2-chloro-2′-arabino-fluoro-2′-deoxyadenosine (CAFdA), 2-fluoroarabinosyladenine (F-ara-A) and cytosine arabinoside (ara-C) were compared in mice using whole-body autoradiography. CdA, CAFdA and F-ara-A have quite similar molecular structures, but they differ substantially in clinical activity as well as the side effects. Eight mice were injected intravenously in couples. One mouse from each pair was killed 20 min postinjection and the other mouse from each pair 4 h after the injection. The distribution, of the label was then analyzed by whole-body autoradiography. The distribution of the nucleoside analogs was rapid and uniform. High concentrations were found in highly perfused organs. After 4 h the overall concentration had decreased but relatively high activities were found in the skin for CdA and CAFdA, in the thymus for ara-C and the bone marrow for CdA. Both CdA and CAFdA were found in the brain, but the concentration, was surprisingly lower after 4 h for CAFdA, a lipophilic and more stable analog as compared to CdA. There was an uptake of CdA, F-ara-A and CAFdA in the skin. There were signs of retention of ara-C in parts of the thymus. The present investigations indicate that the nucleoside analog transport to the brain in mice is not primarily dependent upon passive diffusion over a lipophilic barrier, but suggestive of a specific transport mechanism.  相似文献   
2.
In order to better understand the mechanisms of resistance to thiopurines, we studied two sublines of the MOLT4 T-lymphoblastic leukemia cell line, resistant to 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). We found that the underlying mechanism of resistance in both resistant cell lines was a markedly reduction in initial transport of 6-MP (3- and 5-fold, respectively, in 6-MP- and 6-TG-resistant cells). No significant alteration of activities of hypoxanthine-guanine phosphoribosyl transferase, thiopurine methyltransferase or inosine monophosphate dehydrogenase, the key enzymes involved in the metabolism of thiopurines was detected. We conclude that defected initial transport of thiopurines by cells may very well explain their resistance to these drugs.  相似文献   
3.
In order to better understand the mechanisms of resistance to thiopurines, we studied two sublines of the MOLT4 T-lymphoblastic leukemia cell line, resistant to 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). We found that the underlying mechanism of resistance in both resistant cell lines was a markedly reduction in initial transport of 6-MP (3- and 5-fold, respectively, in 6-MP- and 6-TG-resistant cells). No significant alteration of activities of hypoxanthine-guanine phosphoribosyl transferase, thiopurine methyltransferase or inosine monophosphate dehydrogenase, the key enzymes involved in the metabolism of thiopurines was detected. We conclude that defected initial transport of thiopurines by cells may very well explain their resistance to these drugs.  相似文献   
4.
Resistance toward nucleoside analogues is often due to decreased activities of the activating enzymes deoxycytidine kinase (dCK) and/or deoxyguanosine kinase (dGK). With small interfering RNA (siRNA), dCK and dGK were downregulated by approximately 70% in CEM cells and tested against six nucleoside analogues using the methyl thiazol tetrazolium assay. SiRNA-transfected cells reduced in dCK activity were 3- to 6-fold less sensitive to CdA, AraC, and CAFdA. The sensitivity to AraG and FaraA was unchanged, while the sensitivity toward gemcitabine was significantly increased. dGK depletion in cells resulted in lower sensitivity to FaraA, dFdC, CAFdA, and AraG, but slightly higher sensitivity to CdA and AraC.  相似文献   
5.
Exposure of MOLT4 human T-cell leukemia cells to 6-Mercaptopurine (6-MP) and 6-Thioguanine (6-TG) resulted in acquired resistance associated with attenuated expression of the genes encoding concentrative nucleoside transporter 3 (CNT3) and equilibrative nucleoside transporter 2 (ENT2). To identify other alterations at the RNA and DNA levels associated with 6-MP- and 6-TG resistance, we compared here the patterns of gene expression and DNA copy number profiles of resistant sublines to those of the parental wild-type cells. The mRNA levels for two nucleoside transporters were down-regulated in both of the thiopurine-resistant sublines. Moreover, both of these cell lines expressed genes encoding the enzymes of purine nucleotide composition and synthesis, including adenylate kinase 3-like 1 and guanosine monophosphate synthetase at significantly lower levels than wild-type cells. In addition, expression of the mRNA for a specialized DNA polymerase, human terminal transferase encoded by the terminal deoxynucleotidyl transferase (DNTT) gene, was 122- and 93-fold higher in 6-TG- and 6-MP-resistant cells, respectively. The varying responses to 6-MP- and 6-TG observed here may help identify novel cellular targets and modalities of resistance to thiopurines, as well as indicating new potential approaches to individualization therapy with these drugs.  相似文献   
6.
The aim of this study was to clarify the biochemical and molecular mechanisms behind the cross-resistance to nucleoside analogues (NAs) in four erythroleukemic cell lines with acquired resistance to the anthracycline daunorubicin and to the vinca alkaloid vincristine, expressing high levels of p-glycoprotein (P-gp, MDR1). All resistant strains exhibited cross-resistance to NA (cladribine and cytosine arabinoside)-induced apoptosis, assessed by caspase-3-like activation and were less sensitive to NA cytotoxicity in MTT assay. Real-time PCR and enzyme activity analysis showed reduced amounts of deoxycytidine kinase (35-80%) and elevated levels of 5'-nucleotidases (50-100%). The ratio 5'-nucleotidase to deoxycytidine kinase increased between 2.5- and 7.5-folds in resistant cells. This is in agreement with the observation that 5'-nucleotidase/deoxycytidine kinase ratio might be an important factor in predicting resistance to NAs. Implications of this finding for combining anthracyclines or vinca alkaloids with NAs toward leukemic cells are discussed.  相似文献   
7.
The accuracy of two clinical assays, the enzyme-multiplied immunoassay (EMIT) and fluorescence polarization immunoassay (FPIA2), universally employed for measurement of plasma levels of methotrexate (MTX) in children administered a high dose of this drug for treatment of acute lymphoblastic leukemia was evaluated here. Because of its superior specificity, sensitivity, and precision, high performance liquid chromatography (HPLC) was selected as the reference method with which the other two procedures were compared using approximately 420 different plasma samples for method comparison. 7-Hydroxymethotrexate (7-OHMTX), the major plasma metabolite of MTX, that can be detected in plasma at relatively high concentrations for long periods following infusion of a high dose of MTX, was also quantitated by HPLC. Forty-two and 66 h after infusion, the plasma level of MTX was overestimated in 2% and 3% of the samples by the FPIA2 procedure in 5% and 31% by the EMIT assay. The overall correlation coefficients (r2) for the values obtained by FPIA2 or EMIT versus those based on HPLC were 0.989 and 0.663, respectively. The presence of 7-OHMTX exerted a highly significant influence (p=0.0007 as determined by the unpaired t-test) on MTX measurement by the EMIT assay. We conclude that the rapid automated procedures routinely used at present and in particular EMIT, suffer from cross-reactivity with metabolites of MTX. Thus, the relatively high percentage of samples in which the level of MTX is overestimated at check-points by EMIT may result in longer periods of hospitalization, higher costs and prolonged administration of elevated doses of "rescue" leucovorin with an increased risk for relapse.  相似文献   
8.
We have previously reported that in a MOLT-4 leukemia cell line the acquired resistance to 9-beta-D-arabinofuranosylguanine (Ara-G) is due to deficiency of the activating enzymes deoxyguanosine kinase and deoxycytidine kinase [Biochem. Biophys. Res. Commun. 293 (5) (2002) 1489]. In this study we investigated whether apoptotic pathways are affected in two human T-cell lymphoblastic MOLT-4 cell lines with acquired resistance to Ara-G. In contrast to the MOLT-4 wild type cells, Ara-G resistant cells displayed no increase in caspase-3 or caspase-9 activity, DNA fragmentation, cytochrome c release or a drop in the mitochondrial membrane potential (DeltaPsi(mito)) upon Ara-G treatment. A drop in the DeltaPsi(mito) was induced in wild type cells after treatment with tributyltin, an inducer of mitochondrial permeability transition, and with carbonyl cyanide m-chlorophenylhydrazone, an uncoupling agent that reduces the DeltaPsi(mito), although not in Ara-G resistant cells. Ara-G resistant cells displayed higher levels of the anti-apoptotic protein Bcl-xL in immunoblots. A recent study indicates that Ara-G-induced apoptosis is mediated in part via the Fas pathway [Cancer Res. 43 (2047) (2002) 411]. When cells were treated with anti-Fas antibody, the wild type cell line exhibited increased caspase-3-like activity but the Ara-G resistant cells did not. Using FACS analysis and semi-quantitative PCR, 3-6-fold decreased protein levels and almost no detectable mRNA levels of Fas in the resistant cells were recorded. These data indicate that the inability to induce apoptosis via both the apoptosome pathway and the Fas pathway, due to increased levels of Bcl-xL and a lack of Fas, contributes to Ara-G resistance. This resistance to apoptosis in Ara-G resistant cells may serve to explain the overall resistance to a variety of anti-neoplastic drugs.  相似文献   
9.
10.
Deoxynucleoside analogues (dNAs) are cytotoxic towards both replicating and indolent malignancies. The impact of fluctuations in the metabolism of dNAs in relation to cell cycle could have strong implications regarding the activity of dNAs. Deoxycytidine kinase (dCK) and deoxyguanosine kinase (dGK) are important enzymes for phosphorylation/activation of dNAs. These drugs can be dephosphorylated/deactivated by 5'-nucleotidases (5'-NTs) and elevated activities of 5'-NTs and decreased dCK and/or dGK activities represent resistance mechanisms towards dNAs. The activities of dCK, dGK, and three 5'-NTs were investigated in four human leukemic cell lines in relationship to cell cycle progression and cytotoxicity of dNAs. Synchronization of cell cultures to arrest in G0/G1 by serum-deprivation was performed followed by serum-supplementation for cell cycle progression. The activities of dCK and dGK increased up to 3-fold in CEM, HL60, and MOLT-4 cells as they started to proliferate, while the activity of cytosolic nucleotidase I was reduced in proliferating cells. CEM, HL60, and MOLT-4 cells were also more sensitive to cladribine, cytarabine, 9-beta-D-arabinofuranosylguanine and clofarabine than K562 cells which demonstrated lower levels and less alteration of these enzymes and were least susceptible to the cytotoxic effects of most dNAs. The results suggest that, in the cell lines studied, the proliferation process is associated with a general shift in the direction of activation of dNAs by inducing activities of dCK/dGK and reducing the activity of cN-I which is favourable for the cytotoxic effects of cladribine, cytarabine and, 9-beta-D-arabinofuranosylguanine. These results emphasize the importance of cellular proliferation and dNA metabolism by both phosphorylation and dephosphorylation for susceptibility to dNAs. It underscores the need to understand the mechanisms of action and resistance to dNAs in order to increase efficacy of dNAs treatment by new rational.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号