首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1299篇
  免费   97篇
  2023年   3篇
  2022年   8篇
  2021年   21篇
  2020年   9篇
  2019年   16篇
  2018年   15篇
  2017年   15篇
  2016年   40篇
  2015年   61篇
  2014年   67篇
  2013年   64篇
  2012年   118篇
  2011年   98篇
  2010年   64篇
  2009年   61篇
  2008年   81篇
  2007年   81篇
  2006年   54篇
  2005年   83篇
  2004年   72篇
  2003年   66篇
  2002年   67篇
  2001年   24篇
  2000年   12篇
  1999年   17篇
  1998年   18篇
  1997年   8篇
  1996年   6篇
  1995年   9篇
  1994年   3篇
  1993年   6篇
  1992年   10篇
  1991年   3篇
  1990年   8篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   10篇
  1985年   6篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1976年   3篇
  1975年   5篇
  1973年   8篇
  1972年   4篇
  1962年   2篇
排序方式: 共有1396条查询结果,搜索用时 31 毫秒
1.
To evaluate possible fibrogenic effects of CYP2E1-dependent generation of reactive oxygen species, a model was developed using co-cultures of HepG2 cells, which do (E47 cells) or do not (C34 cells) express cytochrome P450 2E1 (CYP2E1) with stellate cells. There was an increase in intra- and extracellular H(2)O(2), lipid peroxidation, and collagen type I protein in stellate cells co-cultured with E47 cells compared with stellate cells alone or co-cultured with C34 cells. The increase in collagen was prevented by antioxidants and a CYP2E1 inhibitor. CYP3A4 did not mimic the stimulatory effects found with CYP2E1. Collagen mRNA levels remained unchanged, and pulse-chase analysis indicated similar half-lives of collagen I protein between both co-cultures. However, collagen protein synthesis was increased in E47 co-culture. Hepatocytes from pyrazole-treated rats (with high levels of CYP2E1) induced collagen protein in primary stellate cells, and antioxidants and CYP2E1 inhibitors blocked this effect. These results suggest that increased translation of collagen mRNA by CYP2E1-derived reactive oxygen species is responsible for the increase in collagen protein produced by the E47 co-culture. These co-culture models may be useful for understanding the impact of CYP2E1-derived ROS on stellate cell function and activation.  相似文献   
2.
In isolated rat liver cells, ethanol inhibited gluconeogenesis from xylitol and sorbitol but not from fructose. Acetaldehyde, at initial concentrations of 0.2, 0.5, and 1.0 mm, stimulated gluconeogenesis from xylitol and sorbitol in the absence of pyrazole but inhibited in the presence of pyrazole. There was no effect with fructose. Acetate had no effect. Methylene blue and pyruvate (but not lactate) prevented the stimulatory as well as the inhibitory effects of acetaldehyde. Acetoacetate (but not β3-hydroxybutyrate) prevented, to a large extent, the inhibitory effects of low (but not high) concentrations of acetaldehyde. The inhibition by low concentrations of acetaldehyde appears to be mediated via acetaldehyde oxidation in the mitochondria, whereas the inhibition by high concentrations of acetaldehyde appears to reflect acetaldehyde oxidation in the cytosol. These data indicate that the inhibitory action of ethanol on glucose production from xylitol and sorbitol can be reproduced by physiological concentrations of acetaldehyde. Changes in the NAD+NADH ratio produced during acetaldehyde metabolism appear to be responsible for these effects of acetaldehyde. These changes may contribute to the actions of ethanol on gluconeogenesis from these substrates.  相似文献   
3.
4.
By using newly hatched (approximately 2 weeks old) brown trout(Salmo trutta) from six families of wild and six families ofsea-ranched origin (seventh generation), we tested the hypothesesthat (1) the hatchery environment selects for increased boldness,and (2) boldness predicts dominance status. Sea-ranched troutspend their first 2 years in the hatchery before being releasedinto the wild at the onset of seaward migration. Trout werepresented with a novel object (tack) and with food (brine shrimp),and their responses were measured and scored in terms of boldness.Siblings with increasing difference in boldness were then pairedin dyadic contests. Fish of sea-ranged origin were on averagebolder than were fish of wild origin, and bolder individualswere more likely to become dominant regardless of origin. Boldnesswas not related to RNA levels, indicating that bold behaviorwas not a consequence of higher metabolism or growth rate. Neitherwas size a predictor of bold behavior or the outcome of dyadiccontests. These results are consistent with studies on olderlife stages showing increased boldness toward predators in hatchery-selectedfish, which suggests that behavioral consequences of hatcheryselection are manifested very early in life. The concordancebetween boldness and dominance may suggest that these behaviorsare linked in a risk prone-aggressive phenotype, which may bepromoted by hatchery selection. However, we also found significantvariation in behavioral and growth-related traits among families,suggesting that heritable variation has not been exhausted bysea-ranching procedures.  相似文献   
5.
Book reviewed in this article:
Images of Power: Balinese Paintings Made for Gregory Bateson and Margaret Mead . Hildred Geertz.  相似文献   
6.
[Acyl CoA]monoacylglycerol acyltransferase 2 (MGAT2) is of interest as a target for therapeutic treatment of diabetes, obesity and other diseases which together constitute the metabolic syndrome. In this Letter we report our discovery and optimisation of a novel series of MGAT2 inhibitors. The development of the SAR of the series and a detailed discussion around some key parameters monitored and addressed during the lead generation phase will be given. The in vivo results from an oral lipid tolerance test (OLTT) using the MGAT2 inhibitor (S)-10, shows a significant reduction (68% inhibition relative to na?ve, p <0.01) in plasma triacylglycerol (TAG) concentration.  相似文献   
7.
8.
The ability of NADPH-cytochrome P-450 reductase to interact with iron and generate oxygen radicals was evaluated by assaying for low level chemiluminescence. The basic reaction system which contained the reductase, an NADPH-generating system, ferric-EDTA as an electron acceptor, and t-butyl hydroperoxide as the oxidant acceptor, resulted in the production of chemiluminescence. Omission of any of these components resulted in a complete loss of chemiluminescence. The light emission was completely sensitive to inhibition by glutathione and butylated hydroxytoluene, partially sensitive (about 60% decrease) to catalase and hydroxyl radical scavengers, and relatively insensitive (about 20% decrease) to superoxide dismutase. The ability of other ferric chelates to replace ferric-EDTA in catalyzing the reductase-dependent chemiluminescence was evaluated. Ferric-citrate, -ADP, -ATP, and ferric-ammonium sulfate were ineffective in promoting chemiluminescence, whereas ferric-diethylenetriaminepentaacetic acid was even more effective than ferric-EDTA. Thus, the ferric chelates, which catalyze reductase-dependent chemiluminescence, are those which are efficient electron acceptors from the reductase and were previously shown to be those capable of catalyzing hydroxyl radical production by microsomes and the reductase. It is suggested that chemiluminescence results from (a) the direct interaction of the reduced iron chelate with the hydroperoxide (Fenton-type of reaction) to generate alkoxyl and peroxyl radicals, and (b) the generation of hydroxyl radicals, which subsequently react with the hydroperoxide to generate secondary radicals. The latter, but not the former, would be sensitive to inhibition by catalase and competitive hydroxyl radical scavengers, whereas both would be sensitive to antioxidants such as butylated hydroxytoluene. Chemiluminescence appears to be a versatile tool for studying the reductase-dependent generation of oxygen radicals and for the interaction of reductase with iron.  相似文献   
9.
Pyrazole, an effective inhibitor of alcohol dehydrogenase, was previously shown to be a scavenger of the hydroxyl radical. 4-Hydroxypyrazole is a major metabolite in the urine of animals administered pyrazole in vivo. Experiments were conducted to show that 4-hydroxypyrazole was a product of the interaction of pyrazole with hydroxyl radical generated from three different systems. The systems utilized were the iron-catalyzed oxidation of ascorbate, the coupled oxidation of hypoxanthine by xanthine oxidase, and NADPH-dependent microsomal electron transfer. Ferric-EDTA was added to all the systems to catalyze the production of hydroxyl radicals. A HPLC procedure employing either uv detection or electrochemical detection was utilized to assay for the production of 4-hydroxypyrazole. The three systems all supported the oxidation of pyrazole to 4-hydroxypyrazole by a reaction which was sensitive to inhibition by competitive hydroxyl radical scavengers such as ethanol, mannitol, or dimethyl sulfoxide and to catalase. The sensitivity to catalase implicates H2O2 as the precursor of the hydroxyl radical by all three systems. Superoxide dismutase inhibited production of 4-hydroxypyrazole only in the xanthine oxidase reaction system. In the absence of ferric-EDTA (and azide), microsomes catalyzed the oxidation of pyrazole to 4-hydroxypyrazole by a cytochrome P-450-dependent reaction which was independent of hydroxyl radicals. This latter pathway may be primarily responsible for the in vivo metabolism of pyrazole to 4-hydroxypyrazole. The production of 4-hydroxypyrazole from the interaction of pyrazole with hydroxyl radicals may be a sensitive, rapid technique for the detection of these radicals in certain tissues or under certain conditions, e.g., increasing oxidative stress.  相似文献   
10.
The production of potent oxygen radicals by microsomal reaction systems has been well characterized. Relatively little attention has been paid to generation of oxygen radicals by liver nuclei, or to the interaction of nuclei with different ferric complexes to catalyze NADH- or NADPH-dependent production of reactive oxygen intermediates. Intact rat liver nuclei were capable of catalyzing an iron-dependent production of .OH as reflected by the oxidation of .OH scavenging agents such as 2-keto-4-thiomethylbutyrate, dimethyl sulfoxide, and t-butyl alcohol. Inhibition of .OH production by catalase implicates H2O2 as the precursor of .OH generated by the nuclei, whereas superoxide dismutase had only a partially inhibitory effect. The production of .OH with either cofactor was striking increased by addition of ferric-EDTA or ferric-diethylenetriamine-pentaacetic acid (DTPA) whereas ferric-ATP and ferric-citrate were not effective catalysts. All these ferric complexes were reduced by the nuclei in the presence of either NADPH or NADH. The pattern of iron chelate effectiveness in catalyzing lipid peroxidation by nuclei was opposite to that of .OH production; with either NADH or NADPH, nuclear lipid peroxidation was increased by the addition of ferric ammonium sulfate, ferric-ATP, or ferric-citrate, but not by ferric-EDTA or ferric-DTPA. NADPH-dependent nuclear lipid peroxidation was insensitive to catalase, superoxide dismutase, or .OH scavengers; the NADH-dependent reaction showed a partial sensitivity (30 to 40%) to these additions. The overall patterns of .OH production and lipid peroxidation by the nuclei are similar to those shown by microsomes, e.g., effect of ferric complexes, sensitivity to antioxidants; however, rates with the nuclei are less than 20% those of microsomes, which reflect the lower activities of NADPH- and NADH-cytochrome c reductase in the nuclei. The potential for nuclei to reduce ferric complexes and catalyze production of .OH-like species may play a role in the susceptibility of the genetic material to oxidative damage under certain conditions since such radicals would be produced site-directed and not exposed to cellular antioxidants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号