首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1951篇
  免费   207篇
  国内免费   2篇
  2023年   8篇
  2022年   12篇
  2021年   43篇
  2020年   20篇
  2019年   18篇
  2018年   32篇
  2017年   24篇
  2016年   45篇
  2015年   73篇
  2014年   88篇
  2013年   116篇
  2012年   144篇
  2011年   131篇
  2010年   85篇
  2009年   89篇
  2008年   124篇
  2007年   117篇
  2006年   99篇
  2005年   116篇
  2004年   83篇
  2003年   90篇
  2002年   95篇
  2001年   33篇
  2000年   30篇
  1999年   29篇
  1998年   25篇
  1997年   31篇
  1996年   17篇
  1995年   24篇
  1994年   10篇
  1993年   10篇
  1992年   12篇
  1990年   16篇
  1989年   7篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1984年   14篇
  1983年   9篇
  1982年   12篇
  1980年   8篇
  1979年   13篇
  1978年   8篇
  1976年   10篇
  1974年   8篇
  1973年   6篇
  1971年   8篇
  1969年   8篇
  1966年   8篇
排序方式: 共有2160条查询结果,搜索用时 78 毫秒
1.
2.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   
3.
UK-73,093 was identified in a screening program as a compound able to displace [3H]-neurotensin from its bovine brain receptor. We describe the discovery of this compound, species differences in receptor affinity and its characterization as a functional neurotensin antogonist in vitro and in vivo.  相似文献   
4.
3,4-Dihydroxyphenylethylamine (DA, dopamine) levels in the rat prefrontal cortex were selectively decreased by 52%, leaving noradrenaline (NA) levels unaffected, 4 weeks following restricted bilateral electrolytic lesions of the ventral mesencephalic tegmentum (VMT). These lesions also induced a significant increase in DA-sensitive, but not isoproterenol-sensitive, adenylate cyclase activity in tissue homogenates (+38%). We had shown previously that chemical (6-hydroxydopamine, 6-OHDA) lesions of the VMT destroy both ascending DA and NA fibers but do not alter the D1-receptor density in the prefrontal cortex. In this study, electrolytic lesions of the VMT were combined with bilateral injections of 6-OHDA made laterally in the pedunculus cerebellaris superior to assess the role of NA fibers in the development of D1-receptor supersensitivity. This combined treatment produces a large decrease of cortical NA levels (-95%), an increase in beta-adrenergic-sensitive adenylate cyclase activity (+110%), and a decrease in DA levels (-60%), but does not alter D1-receptor density in the prefrontal cortex. These results indicate that the development of D1-receptor supersensitivity in the prefrontal cortex following electrolytic lesion of the VMT depends on the presence of an intact NA innervation.  相似文献   
5.
6.
Summary The study of mutants of Erwinia specifically unable to ferment cellobiose indicates that the mutations are clustered between arg and ile on the chromosome of this organism. In vivo cloning of the genes responsible for cellobiose utilization lead to a plasmid, pBEC2, which complements all Erwinia Clb- specific mutants. When introduced into wild-type E. coli it allows this organism to use cellobiose, arbutin and salicin; it also complements bglB and bglC mutants of Escherichia coli indicating that arbutin and salicin utilization is due to the products of the pBEC2 cloned genes. From the characterization of mutants pleiotropically affected in the utilization of various carbon sources, including cellobiose, arbutin and salicin, it is proposed that the three--glucosides are substrates of the phosphoenolpyruvate-dependent phosphotransferase system (PTS).  相似文献   
7.
Our approach to the modeling of beta-endorphin has been based on the proposal that three basic structural units can be distinguished in the natural peptide hormone: a highly specific opiate recognition sequence at the N terminus (residues 1-5) connected via a hydrophilic link (residues 6-12) to a potential amphiphilic helix in the C-terminal residues 13-31. Our previous studies showed the validity of this approach and have demonstrated the importance of the amphiphilic helical structure in the C terminus of beta-endorphin. The present model, peptide 5, has been designed in order to evaluate further the requirements of the amphiphilic secondary structure as well as to determine the importance of this basic structural element as compared to more specific structural features which might occur in the C-terminal segment. For these reasons, peptide 5 retains the three structural units previously postulated for beta-endorphin; the major difference with regard to previous models is that the whole C-terminal segment, residues 13-31, has been built using only D-amino acids. In aqueous buffered solutions as well as in 2,2,2-trifluoroethanol-containing solutions, the CD spectra of peptide 5 show the presence of a considerable amount of left-handed helical structure. Enzymatic degradation studies employing rat brain homogenate indicate that peptide 5 is stable in this milieu. In delta- and mu-opiate receptor-binding assays, peptide 5 shows a slightly higher affinity than beta-endorphin for both receptors while retaining the same delta/mu selectivity. In opiate assays on the guinea pig ileum, the potency of peptide 5 is twice that of beta-endorphin. In the rat vas deferens assay, which is very specific for beta-endorphin, peptide 5 displays mixed agonist-antagonist activity. Most remarkably, peptide 5 displays a potent opiate analgesic effect when injected intracerebroventricularly into mice. At equal doses, the analgesic effect of peptide 5 is less than that of beta-endorphin (10-15%) but longer lasting. In conjunction with our previous model studies, these results clearly demonstrate that the amphiphilic helical structure in the C terminus of beta-endorphin is of predominant importance with regard to activity in rat vas deferens and analgesic assays. The similarity between the in vitro and in vivo opiate activities of beta-endorphin and peptide 5, when compared to the drastic change in chirality in the latter model, demonstrates that even a left-handed amphiphilic helix formed by D-amino acids can function satisfactorily as a structural unit in a beta-endorphin-like peptide.  相似文献   
8.
The inhibitory effect of propionic acid P and biomass concentration X is studied in batch and continuous fermentations with cell recycle.In batch fermentations, the specific growth rate decreases and cancels out at a critical propionic acid concentration Pc 1; the formerly decreasing specific production rate becomes constant after Pc 1 and cancels out when a second critical propionic acid concentration Pc 2 is reached.In continuous fermentation with cell recycle, a similar inhibition is observed with biomass. The specific rates decrease and become constant at a critical biomass concentration Xc. They cancel out at different high biomass concentrations.In both cases, the specific production rate can be related to the specific growth rate by the Luedeking and Piret expression: =+, [1], where the constants and are determined by the fermentation parameters.List of Symbols t h time - X kg/m3 biomass concentration - P kg/m3 propionic acid concentration - A kg/m3 acetic acid concentration - S kg/m3 lactose concentration - dX/dt kg/(m3h) instantaneous rate of cell growth - dP/dt kg/(m3h) instantaneous rate of propionic acid production - h–1 specific growth rate - h–1 specific propionic acid production rate - D h–1 dilution rate  相似文献   
9.
10.
In our approach to beta-endorphin modeling, we have proposed that the biological properties of the natural peptide are determined by the combination of three basic structural units: a highly specific opiate recognition sequence at the NH2 terminus (residues 1-5) connected via a hydrophilic peptide link (residues 6-12) to a potential amphiphilic helix in the COOH-terminal residues 13-31. In the alpha-helical conformation the hydrophobic domain twists around the length of the helix and covers almost one-half of its surface. The other distinctive features of the helix include its basicity and the two aromatic residues Phe18 and Tyr27. In contrast to previous models we have studied, peptide 4 is a "negative" model in the sense that it was designed and examined in order to determine how the lack of a well defined amphiphilic structure affects the biological properties of beta-endorphin. For this purpose, peptide 4 retains the three structural units previously postulated for beta-endorphin, but the amino acids of the 13-31 region are arranged in such a way that no definite continuous hydrophobic zone could be formed in an alpha- or pi-helical conformation of this region. In aqueous buffered solutions, peptide 4 showed almost the same amount of alpha-helical structure as beta-endorphin, with a slight tendency toward less helicity in 50% aqueous 2,2,2-trifluoroethanol. In rat brain homogenate, peptide 4 was degraded slightly slower than beta-endorphin, in contrast to the apparently much higher stability of previous models under the same conditions. With regard to opiate receptor binding, peptide 4 was twice as potent as beta-endorphin in mu-receptor assays but half as potent in delta-receptor assays. The opiate potency of peptide 4 on the guinea pig ileum was higher than that of beta-endorphin. In contrast, in the rat vas deferens assay, which is very specific for beta-endorphin, the potency of peptide 4 was very low and could be shown not to be mediated by the same opiate mechanism or by the same opiate receptor. A comparison of these results with those of previous model peptides provides further evidence for the importance of an amphiphilic helical structure in beta-endorphin residues 13-31, which determines the resistance to proteolysis of the natural molecule and contributes to the delta- and mu-opiate receptor interaction. The amphiphilicity of this helical structure must also be essential for high opiate activity on the rat vas deferens (epsilon-receptors), whereas no such structural requirement appears to be necessary for interaction with the opiate receptors on the guinea pig ileum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号