首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  4篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
A dearth of scientific data surrounding Micronesia’s coral-reef fisheries has limited their formal assessment and continues to hinder local and regional management efforts. We approach this problem by comparing catch-based datasets from market landings across Micronesia to evaluate fishery status in the Commonwealth of the Northern Mariana Islands (CNMI), Guam, Yap, and Pohnpei. Initial examinations found that calm weather and low lunar illumination predicted between 6% (Yap) and 30% (CNMI) of the variances in daily commercial landings. Both environmentally driven catch success and daily catch variability increased in accordance with reef-fish demand indices. Subsequent insight from species composition and size-at-capture data supported these findings, highlighting reduced trophic levels and capture sizes where higher human-population-per-reef-area existed. Among the 12–15 target species and/or species complexes that accounted for 70% of the harvest biomass, capture sizes were consistently smallest for CNMI and Guam, often below the reported mean reproductive sizes. Comparatively, Pohnpei has the greatest potential for reef fisheries, with a large reef area (303 km2) and a moderate human population (34,000 people). However, the estimated harvest volume of 476 mt year−1 was 8–9 times higher than other jurisdictions. Even on Yap where the reef-fish demand index was lowest (67.7 people km−2 reef habitat), many target fish were harvested below their mean reproductive sizes, including the iconic green bumphead parrotfish and humphead wrasse, as well as several other herbivores. We discuss our results with respect to the contemporary doctrine surrounding size-spectra, catch composition, and catch frequencies that afford insight into fishery pressure and status. We posit that regional catch-based policies (initially) instituted at the market level, combined with area and gear-based restrictions, represent plausible vectors for improving Micronesian fisheries.  相似文献   
2.
Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.  相似文献   
3.
Plasmodium knowlesi is a malaria parasite of Old World monkeys and is infectious to humans. In this study Macaca fascicularis was used as a model to understand the host response to P. knowlesi using parasitological and haematological parameters. Three M. fascicularis of either sex were experimentally infected with P. knowlesi erythrocytic parasites from humans. The pre-patent period for P. knowlesi infection in M. fascicularis ranged from seven to 14 days. The parasitemia observed was 13,686-24,202 parasites per μL of blood for asexual stage and 88-264 parasites per μL of blood for sexual stage. Periodicity analysis adopted from microfilaria periodicity technique of asexual stage showed that the parasitemia peak at 17:39 h while the sexual stage peaked at 02:36 h. Mathematical analysis of the data indicates that P. knowlesi gametocytes tend to display periodicity with a peak (24:00-06:00) that coincides with the peak biting activity (19:00-06:00) of the local vector, Anopheles latens. The morphology of P. knowlesi resembled P. falciparum in early trophozoite and P. malariae in late trophozoite. However, it may be distinguishable by observing the appliqué appearance of the cytoplasm and the chromatin lying inside the ring. Haematological analysis on macaques with knowlesi malaria showed clinical manifestations of hypoglycaemia, anaemia and hyperbilirubinemia. Gross examination of spleen and liver showed malaria pigments deposition in both organs.  相似文献   
4.
Predictive models in invasion biology rely on knowledge of the life history and ecological role of invading species. However, species may change in key traits as they invade a new region, making prediction difficult. For marine invertebrate invaders there have been too few comparative studies to determine whether change in key traits is the exception or the rule. Here we examined populations of the intertidal barnacle Chthamalus proteus in three locations in its native range in the Caribbean and Atlantic, and in the Hawaiian Islands, where it has recently invaded, as a model system for such comparative studies. We measured body size, fecundity, population density and vertical distribution, compared habitat use and investigated aspects of the barnacle’s ecological role in Curaçao, Panama and Brazil and the main Hawaiian Islands. In terms of these measures, the barnacle has undergone little change in its invasion of Hawaii. Thus, if this barnacle had been studied in its native range, predictions about its spread in Hawaii could have been made. As little was known about this barnacle in either its native range or Hawaii, we also carried out studies of its larval life history, fecundity, growth, and mortality. Based on this work, we predict that this barnacle will continue to spread, aided by vessel traffic, throughout the Hawaiian Islands and elsewhere in the Pacific.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号