首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   4篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有52条查询结果,搜索用时 15 毫秒
1.
2.
Hydrobiologia - Pithecopus rusticus is an endemic amphibian restricted to the type locality, in southern Brazil, and possibly endangered to extinction, due to habitat degradation. However, an...  相似文献   
3.
Tyrosinemia type II, also known as Richner–Hanhart syndrome, is an autosomal recessive inborn error of metabolism caused by a deficiency of hepatic cytosolic tyrosine aminotransferase, and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that studies demonstrated that high concentrations of tyrosine provoke oxidative stress in vitro and in vivo in the cerebral cortex of rats, in the present study we investigate the oxidative stress parameters (enzymatic antioxidant defenses, thiobarbituric acid-reactive substances and protein carbonyl content) in cerebellum, hippocampus and striatum of 30-old-day rats after acute administration of l-tyrosine. Our results demonstrated that the acute administration of l-tyrosine increased the thiobarbituric acid reactive species levels in hippocampus and the carbonyl levels in cerebellum, hippocampus and striatum. In addition, acute administration of l-tyrosine significantly decreased superoxide dismutase activity in cerebellum, hippocampus and striatum, while catalase was increased in striatum. In conclusion, the oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia and the administration of antioxidants may be considered as a potential adjuvant therapy for tyrosinemia, especially type II.  相似文献   
4.
Nine O-alkyl and O-prenyl derivatives were synthesized from commercial 2,4-dihydroxybenzophenone, 4,e4,4′-dihydroxybenzophenone and were evaluated for their leishmanicidal activity against promastigote forms of Leishmania amazonensis, as well their toxicity in murine macrophages. All derivatives exhibited better biological activity than their hydroxylated benzophenones precursors, and new compound LFQM-123 (3c) was 250-fold more active than its precursor 4,4′-dihydroxybenzophenone (3). Moreover, some of the results were comparable to the standard drug Amphotericin B, suggesting that the increase in lipophilicity could facilitate protozoa membrane permeation. In this study we confirmed that benzophenone derivatives exhibit leishmanicidal properties, with relatively low toxicity, and thus could be exploited as promise prototypes for the design and development of new drug for the treatment of leishmaniasis.  相似文献   
5.

Background

Candida parapsilosis may acquire resistance to echinocandins, a fact that prompts the search for new therapeutic options.

Aims

The present study aimed to evaluate the in vitro activity of antifungal agents, alone and in combination, against four groups of C. parapsilosis strains: (1) echinocandin-susceptible (ES) clinical isolates (MIC ≤ 2 μg/ml), (2) anidulafungin-resistant strains (MIC ≥ 8 μg/ml), (3) caspofungin-resistant strains (MIC ≥ 8 μg/ml), and (4) micafungin-resistant strains (MIC ≥ 8 μg/ml).

Methods

Antifungal interactions were evaluated by a checkerboard micro-dilution method. The determination of the MIC to each drug for every isolate according to the Clinical and Laboratory Standards Institute documents M27 (2017) and M60 (2017) was also done.

Results

The echinocandins-resistant (ER) strains showed higher MICs to the tested antifungals than the ES strains, except for amphotericin B, for which the ER groups remained susceptible.

Conclusions

Most combinations showed indifferent interactions. The use of monotherapy still seems to be the best option. As resistance to echinocandins is an emergent phenomenon, further studies are required to provide clearer information on the susceptibility differences between strains to these antifungal agents.  相似文献   
6.
Caveolin-1 (Cav-1) expression is increased in hepatic stellate cells (HSC) upon liver cirrhosis and it functions as an integral membrane protein of lipid rafts and caveolae that regulates and integrates multiple signals as a platform. This study aimed to evaluate the role of Cav-1 in HSC. Thus, the effects of exogenous expression of Cav-1 in GRX cells, a model of activated HSC, were determined. Here, we demonstrated through evaluating well-known HSC activation markers – such as α-smooth muscle actin, collagen I, and glial fibrillary acidic protein – that up regulation of Cav-1 induced GRX to a more activated phenotype. GRXEGFP-Cav1 presented an increased migration, an altered adhesion pattern, a reorganization f-actin cytoskeleton, an arrested cell cycle, a modified cellular ultrastructure, and a raised endocytic flux. Based on this, GRX EGFP-Cav1 represents a new cellular model that can be an important tool for understanding of events related to HSC activation. Furthermore, our results reinforce the role of Cav-1 as a molecular marker of HSC activation.  相似文献   
7.
Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features.  相似文献   
8.
Hydrobiologia - Beta diversity is the variability in species composition among sampling units for a given area and can be influenced by several environmental drivers, including environmental...  相似文献   
9.
Due to its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum (T. harzianum) has considerable potential in biomass hydrolysis application. Cellulases from Trichoderma reesei have been widely used in studies of cellulose breakdown. However, cellulases from T. harzianum are less-studied enzymes that have not been characterized biophysically and biochemically as yet. Here, we examined the effects of pH and temperature on the secondary and tertiary structures, compactness, and enzymatic activity of cellobiohydrolase Cel7A from T. harzianum (Th Cel7A) using a number of biophysical and biochemical techniques. Our results show that pH and temperature perturbations affect Th Cel7A stability by two different mechanisms. Variations in pH modify protonation of the enzyme residues, directly affecting its activity, while leading to structural destabilization only at extreme pH limits. Temperature, on the other hand, has direct influence on mobility, fold, and compactness of the enzyme, causing unfolding of Th Cel7A just above the optimum temperature limit. Finally, we demonstrated that incubation with cellobiose, the product of the reaction and a competitive inhibitor, significantly increased the thermal stability of Th Cel7A. Our studies might provide insights into understanding, at a molecular level, the interplay between structure and activity of Th Cel7A at different pH and temperature conditions.  相似文献   
10.
We investigated the impact of two nights of total sleep deprivation (SD) or four nights of rapid eye movement (REM) SD on immunological parameters in healthy men. Thirty-two volunteers were randomly assigned to three protocols (control, total SD or REM SD). Both SD protocols were followed by three nights of sleep recovery. The control and REM SD groups had regular nights of sleep monitored by polysomnography. Circulating white blood cells (WBCs), T- (CD4/CD8) and B-lymphocytes, Ig classes, complement and cytokine levels were assessed daily. Two nights of total SD increased the numbers of leukocytes and neutrophils compared with baseline levels, and these levels returned to baseline after 24 h of sleep recovery. The CD4(+) T-cells increased during the total SD period (one and two nights) and IgA levels decreased during the entire period of REM SD. These levels did not return to baseline after three nights of sleep recovery. Levels of monocytes, eosinophils, basophils and cytokines (IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ) remained unchanged by both protocols of SD. Our findings suggest that both protocols affected the human immune profile, although in different parameters, and that CD4(+) T-cells and IgA levels were not re-established after sleep recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号