首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6391篇
  免费   498篇
  国内免费   2篇
  2023年   31篇
  2022年   93篇
  2021年   157篇
  2020年   108篇
  2019年   126篇
  2018年   161篇
  2017年   145篇
  2016年   227篇
  2015年   333篇
  2014年   333篇
  2013年   568篇
  2012年   566篇
  2011年   503篇
  2010年   335篇
  2009年   256篇
  2008年   402篇
  2007年   399篇
  2006年   370篇
  2005年   270篇
  2004年   279篇
  2003年   268篇
  2002年   236篇
  2001年   53篇
  2000年   36篇
  1999年   57篇
  1998年   59篇
  1997年   53篇
  1996年   46篇
  1995年   30篇
  1994年   42篇
  1993年   42篇
  1992年   27篇
  1991年   21篇
  1990年   23篇
  1989年   15篇
  1988年   17篇
  1987年   17篇
  1986年   12篇
  1985年   10篇
  1984年   18篇
  1983年   16篇
  1982年   18篇
  1981年   17篇
  1980年   8篇
  1978年   16篇
  1977年   10篇
  1975年   6篇
  1974年   7篇
  1973年   7篇
  1972年   6篇
排序方式: 共有6891条查询结果,搜索用时 15 毫秒
1.
The celiac disease (CD) is an inflammatory condition characterized by injury to the lining of the small-intestine on exposure to the gluten of wheat, barley and rye. The involvement of gluten in the CD syndrome has been studied in detail in bread wheat, where a set of “toxic” and “immunogenic” peptides has been defined. For wheat diploid species, information on CD epitopes is poor. In the present paper, we have adopted a genomic approach in order to understand the potential CD danger represented by storage proteins in diploid wheat and sequenced a sufficiently large number of cDNA clones related to storage protein genes of Triticum monococcum. Four bona fide toxic peptides and 13 immunogenic peptides were found. All the classes of storage proteins were shown to contain harmful sequences. The major conclusion is that einkorn has the full potential to induce the CD syndrome, as already evident for polyploid wheats. In addition, a complete overview of the storage protein gene arsenal in T. monococcum is provided, including a full-length HMW x-type sequence and two partial HMW y-type sequences. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
3.
4.
5.
Loss of the survival motor neuron gene (SMN1) is responsible for spinal muscular atrophy (SMA), the most common inherited cause of infant mortality. Even though the SMA phenotype is traditionally considered as related to spinal motor neuron loss, it remains debated whether the specific targeting of motor neurons could represent the best therapeutic option for the disease. We here investigated, using stereological quantification methods, the spinal cord and cerebral motor cortex of ∆7 SMA mice during development, to verify extent and selectivity of motor neuron loss. We found progressive post-natal loss of spinal motor neurons, already at pre-symptomatic stages, and a higher vulnerability of motor neurons innervating proximal and axial muscles. Larger motor neurons decreased in the course of disease, either for selective loss or specific developmental impairment. We also found a selective reduction of layer V pyramidal neurons associated with layer V gliosis in the cerebral motor cortex. Our data indicate that in the ∆7 SMA model SMN loss is critical for the spinal cord, particularly for specific motor neuron pools. Neuronal loss, however, is not selective for lower motor neurons. These data further suggest that SMA pathogenesis is likely more complex than previously anticipated. The better knowledge of SMA models might be instrumental in shaping better therapeutic options for affected patients.  相似文献   
6.
An NADP-preferring malic enzyme ((S)-malate:NADP oxidoreductase (oxalacetate-decarboxylating) EC 1.1.1.40) with a specific activity of 36.6 units per mg of protein at 60 degrees C and an isoelectric point of 5.1 was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus, strain MT-4. The purification procedure employed ion exchange chromatography, ammonium sulfate fractionation, affinity chromatography, and gel filtration. Molecular weight determinations demonstrated that the enzyme was a dimer of Mr 105,000 +/- 2,000 with apparently identical Mr 49,000 +/- 1,500 subunits. Amino acid composition of S. solfataricus enzyme was determined and found to be significantly higher in tryptophan content than the malic enzyme from Escherichia coli. In addition to the NAD(P)-dependent oxidative decarboxylation of L-malate, S. solfataricus malic enzyme was able to catalyze the decarboxylation of oxalacetate. The enzyme absolutely required divalent metal cations and it displayed maximal activity at 85 degrees C and pH 8.0 with a turnover number of 376 s-1. The enzyme showed classical saturation kinetics and no sigmoidicity was detected at different pH values and temperatures. At 60 degrees C and in the presence of 0.1 mM MnCl2, the Michaelis constants for malate, NADP, and NAD were 18, 3, and 250 microM, respectively. The S. solfataricus malic enzyme was shown to be very thermostable.  相似文献   
7.
8.
Summary Peripheral blood DNA was hybridized to the full-length cDNA and the cloned structural gene of human aldolase B. With PvuII endonuclease a restriction fragment length polymorphism was detected that was present in the heterozygous state in about 21% of the individuals tested. A map of the human aldolase gene was constructed for the two groups of individuals found to produce different fragments after PvuII digestion. This allowed the localization of the polymorphic site within the gene, which was found to be due to the loss of a PvuII site in the last intron upstream from the 3 end. This polymorphism may be used as a genetic marker to study individuals affected by hereditary fructose intolerance.  相似文献   
9.
Extensive evidence indicate that platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) play a key role in the stimulation of the 3T3 fibroblast replication: in this connection, PDGF and EGF act as a competence and a progression factor, respectively. We have previously demonstrated that EGF alone leads density-arrested EL2 rat fibroblasts to synthesize DNA and proliferate in serum-free cultures. Here, we have analyzed the role of EGF in the control of EL2 cell proliferation. Our data show a dose-related effect of EGF on DNA synthesis and cell growth, with maximal stimulation for both parameters at 20 ng/ml. On the other hand, autocrine production of PDGF or PDGF-like substances by EL2 cells is seemingly excluded by experiments with anti-PDGF serum or medium conditioned by EL2 fibroblasts. EGF binding studies show that EL2 cells possess high affinity EGF receptors, at a density level 3 to 4-fold higher than other fibroblastic lines. In addition, EL2 cells show a normal down-regulation of EGF receptors, following exposure to EGF, but PDGF, fibroblast growth factor (FGF), transforming growth factor beta (TGF beta) and bombesin have not decreased the affinity of EGF receptor for its ligand. Moreover, in EL2 cells, the EGF is able to induce the synthesis of putative intracellular regulatory proteins that govern the PDGF-induced competence in 3T3 cells. Our data indicate that EGF in EL2 cells may act as both a competence and a progression factor, via induction of the mechanisms, regulated in other cell lines by cooperation between different growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
10.
A study was made of the effects of common protein denaturants and water-miscible organic solvents on both the stability and activity of the malic enzyme [(S)-malate:NADP+ oxidoreductase (oxaloacetate-decarboxylating); EC 1.1.1.40] from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. At 25 degrees C, the enzyme was not inactivated in 4 M urea or 0.05% SDS over 24 h, while the half-life was 30 min in 6 M guanidine hydrochloride and 5 h in 0.075% SDS. The enzyme stability in water-miscible organic solvents at 25 degrees C is somewhat surprising: after a 24-h incubation, the enzyme was completely active in 50% dimethylformamide; it lost 15% of its initial activity in 50% methanol or 15% ethanol. However, the resistance to organic solvents was greatly reduced at higher temperatures. The enzyme was able to catalyze the malate conversion even in the presence of 1.5% Triton X-100 or sodium deoxycholate. A number of solvents were found to stimulate the malic activity independent of time. Studies with 50% methanol revealed that the activation was reversible and inversely related to the temperature; moreover, the solvent was demonstrated to exclusively affect the maximal velocity of catalysis, the Km values for both substrates being unchanged. Investigation was made to find out whether there was a correlation between enzyme stability, as well as activation, and hydrophobicity of the organic medium. The residual malic activity after incubation in the water/organic medium correlated inversely with the logarithm of the partition coefficient in octanol/H2O of the mixture used as a hydrophobicity index. On the other hand, the extent of activation depended directly on the logarithm of the molar concentration of the organic solvent required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents required for maximal enzymatic activation. Because of its remarkable resistance to organic solvents and protein denaturants in general, the malic enzyme from Sulfolobus solfataricus can be considered suitable for biotechnological applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号