New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against
Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in
in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called “Protectome space,” and using such “protective signatures” for protective antigen discovery. In particular, we applied this new approach to
Staphylococcus aureus and Group B
Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.Although vaccines based on attenuated pathogens as pioneered by Luis Pasteur have been shown to be extremely effective, safety and technical reasons recommend that new generation vaccines include few selected pathogen components which, in combination with immunostimulatory molecules, can induce long lasting protective responses. Such approach implies that the key antigens sufficient to confer protective immunity are singled out among the plethora of pathogen molecules. As it turns out, the search for such protective antigens can be extremely complicated.Genomic technologies have opened the way to new strategies in vaccine antigen discovery (
1,
2,
3). Among them, Reverse Vaccinology (RV)
1 has proved to be highly effective, as demonstrated by the fact that a new Serogroup B
Neisseria meningitidis (MenB) vaccine, incorporating antigens selected by RV, is now available to defeat meningococcal meningitis (
4,
5). In essence, RV is based on the simple assumption that cloning all annotated proteins/genes and screening them against a robust and reliable surrogate-of-protection assay must lead to the identification of all protective antigens. Because most of the assays available for protective antigen selection involve animal immunization and challenge, the number of antigens to be tested represents a severe bottleneck of the entire process. For this reason, despite the fact that RV is a brute force, inclusive approach (“test-all-to-lose-nothing” type of approach) in their pioneered work of MenB vaccine discovery, Pizza and co-workers did not test the entire collection of MenB proteins but rather restricted their analysis to the ones predicted to be surface-localized. This was based on the evidence that for an anti-MenB vaccine to be protective bactericidal antibodies must be induced, a property that only surface-exposed antigens have. For the selection of surface antigens Pizza and co-workers mainly used PSORT and other available tools like MOTIFS and FINDPATTERNS to find proteins carrying localization-associated features such as transmembrane domains, leader peptides, and lipobox and outer membrane anchoring motifs. At the end, 570 proteins were selected and entered the still very labor intensive screening phase. Over the last few years, our laboratories have been trying to move to more selective strategies. Our ultimate goal, we like to refer to as the “Holy Grail of Vaccinology,” is to identify protective antigens by “simply” scanning the genome sequence of any given pathogen, thus avoiding time consuming “wet science” and “move straight from genome to the clinic” (
6).With this objective in mind, we have developed a series of proteomics-based protocols that, in combination with bioinformatics tools, have substantially reduced the number of antigens to be tested in the surrogate-of-protection assays (
7,
8). In particular, we have recently described a three-technology strategy that allows to narrow the number of antigens to be tested in the animal models down to less than ten (
9). However, this strategy still requires high throughput experimental activities. Therefore, the availability of
in silico tools that selectively and accurately single out relevant categories of antigens among the complexity of pathogen components would greatly facilitate the vaccine discovery process.In the present work, we describe a new bioinformatics approach that brings an additional contribution to our “from genome to clinic” goal. The approach has been developed on the basis of the assumption that protective antigens are protective in that they have specific structural/functional features (“protective signatures”) that distinguish them from immunologically irrelevant pathogen components. These features have been identified by using existing databases and prediction tools, such as PFam and SMART. Our approach focuses on protein biological role rather than its localization: it is completely protein localization unbiased, and lead to the identification of both surface-exposed and secreted antigens (which are the majority in extracellular bacteria) as well as cytoplasmic protective antigens (for instance, antigens that elicit interferon γ producing CD4+ T cells, thus potentiating the killing activity of phagocytic cells toward intracellular pathogens). Should these assumptions be valid, PS could be identified if: (1) all known protective antigens are compiled to create what we refer to as “the Protectome space,” and (2) Protectome is subjected to computer-assisted scrutiny using selected tools. Once signatures are identified, novel protective antigens of a pathogen of interest should be identifiable by scanning its genome sequence in search for proteins that carry one or more protective signatures. A similar attempt has been reported (
10), where the discrimination of protective antigens
versus nonprotective antigens was tried using statistical methods based on amino acid compositional analysis and auto cross-covariance. This model was implemented in a server for the prediction of vaccine candidates, that is, Vaxijen (
www.darrenflower.info/Vaxijen); however, the selection criteria applied are still too general leading to a list of candidates that include ca. 30% of the total genome ORFs very similarly to the number of antigens predicted by classical RV based on the presence of localization signals.Here we show that Protectome analysis unravels specific signatures embedded in protective antigens, most of them related to the biological role/function of the proteins. These signatures narrow down the candidate list to ca. 3% of the total ORFs content and can be exploited for protective antigen discovery. Indeed, the strategy was validated by demonstrating that well characterized vaccine components could be identified by scanning the genome sequence of the corresponding pathogens for the presence of the PS. Furthermore, when the approach was applied to
Staphylococcus aureus and
Streptococcus agalactiae (Group B
Streptococcus, GBS) not only already known protective antigens were rediscovered, but also two new protective antigens were identified.
相似文献