首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
2.
Episodic river flash floods, characteristic of Mediterranean climates, are suspected to greatly affect the functioning of microbial food webs. For the first time, the abundance, biomass and diversities of microbial food web components were studied before and during 4 consecutive days after a flash flood that occurred in November 2008, in the surface waters of five stations along a salinity gradient from 20 to 36 in the Thau lagoon. Eukaryotic pico- and nanophytoplankton were discharged from the river into the lagoon and increased by 30- and 70-fold, respectively. Bacteria increased by only 2-fold in the lagoon, from around 4–8 × 106 cells ml−1, probably benefiting from river nutrient input. Chlorophyll a increased 4-fold, and pigment biomarkers showed that the dinophyceae, prasinophyceae and prymnesiophyceae were sensitive to the flood perturbation, whereas the bacillariophyceae, cryptophyceae and chlorophyceae were resistant and/or transported to the lagoon from the river. Predator responses were more complex as total heterotrophic flagellate abundance decreased slightly, whereas those of specific naked ciliates increased, particularly for Uronema sp. The flood also induced a specific change in diversity, from a community dominated by Strobilidium spiralis to a community dominated by Uronema sp. The tintinnid community was particularly sensitive to the flood event as the abundance of all species decreased greatly. The high increases in biomass, mainly brought by the river during the flood, could have eventually sedimented to the benthic layer and/or been transported further into the lagoon, supporting the pelagic food web, or have even been exported to the Mediterranean Sea.  相似文献   
3.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   
4.
A perfusion bioreactor allowing continuous extraction of secondary metabolites was designed and challenged for Eschscholtzia californica plant cell suspensions. Four sedimentation columns mounted inside a 2.5-L bioreactor separated single cells and cell aggregates from the culture medium. Cells were elicited with chitin at day 4 and the liquid medium free of cells and debris was then continuously pumped to the extraction columns containing fluidized XAD-7 resins, and then recirculated back to the cell suspension. A medium upward velocity corresponding to cell sedimentation velocity maintained a stable cell/medium separation front in the columns for sedimented cell volume (SCV) of 90% (70% packed cell volume, PCV). Two perfusion bioreactor cultures of 10 and 14 days were performed. A maximum dilution rate of 20.4/day was reached from day 4 to day 6, and was then reduced to 5/day at day 9 for 55% SCV. Control cultures were performed without and with free extraction resins into the cell suspension. Perfusion cultures showed similar specific growth rates of 0.24 +/- 0.04/day before and after elicitation. However, production level in the perfusion cultures was similar to that from the culture without resins with a maximum of 2.06 micromole/gDW total alkaloids, with 1.54 micromole/gDW in the resins. Cultures with free resins resulted in 30.94 micromole/gDW with 28.4 +/- 8.8 micromole/gDW in the resins. Difference in the cells nutritional state from elicitation was identified as a major cause in the production reduction. However, pathway to chelilutine was favored in the continuous extraction culture.  相似文献   
5.
The composition of the phytoplanktonic communities in the surface waters of the La Reunion-Kerguelen transect (from 38°36S to 46°33S) has been investigated under spring conditions (Antarès 3 cruise, France-JGOFS, 28 September–8 November, 1995). The study, conducted at six stations in the subtropical frontal zone, involved size fractionations (threshold: 2 μm). The large variations in the overall biomass and autotrophic carbon fixation, calculated via Rubisco activity measurements and expressed respectively in terms of μg chlorophyll (a + b + c) per liter and nmol fixed carbon dioxide per liter and per hour, were attributable only to phytoplanktonic cells of >2 μm, with a peak observed in the frontal zone. The picophytoplankton (<2 μm) biomass remained constant throughout the transect, but the evolution of the species composition of the picophytoplanktonic population, as calculated from flow cytometry measurements through this frontal zone, changed. This study provides evidence, for the first time in this area, of the disappearance of prochlorophytes from the south of the frontal zone (42–47°S). Picoeukaryotes (<2 μm) and cyanobacteria populations, resolved by flow cytometry, were present all along the transect. However, their abundance decreased southward up to the quasi-disappearance of cyanobacteria at the southernmost station (52°S) that is characteristic of antarctic waters. The presence of prochlorophytes that is exclusive to the subtropical surface waters, and the low carbon fixation activity associated with these waters, may be linked to the specific hydrological features encountered. In contrast, the marked reduction in the cyanobacteria and the abundance of picoeukaryotes along the north-south transect is more likely to be a result of the reduction in temperature through the frontal zone. Accepted: 17 July 1998  相似文献   
6.
Biosynthesis of sphingomyelin from ceramides was investigated in lung subcellular fractions by incubating a lyophilized mixture of albumin and subcellular fraction (0.1-0.2 mg of protein) coated with [acyl-14C]-ceramide and phosphatidyl[methyl-3H]choline in Tris-buffer. The lamellar-body-rich fraction exhibited the highest specific activity for sphingomyelin biosynthesis measured by 14C incorporation into sphingomyelins or by [3H]phosphocholine transfer from phosphatidylcholines. Plasma membranes formed the next most active fraction, followed by the 'smooth' and, then, the 'rough' endoplasmic reticulum. Sphingomyelin biosynthesis by lamellar bodies was optimum at pH 7.4 and was inhibited by sphingomyelins formed. Slight inhibitory effects were also observed with Mn2+, Ca2+ and lysophosphatidylcholine. Phosphocholine transfer from CDPcholine was not observed under the reaction conditions employed. Ceramide conversion and phosphocholine transfer increased with ceramide concentration to reach a maximum at about 0.06 mM. The highest conversion rate was observed when 18:1 ceramide was used as an acceptor. When 1-palmitoyl-2-oleoylphosphatidylcholine was the phosphocholine donor, the overall biosynthesis of sphingomyelin was much higher than when using dipalmitoylphosphatidylcholine. These results suggest the possible involvement of the studied reaction in the control of the degree of saturation of the surfactant phosphatidylcholine.  相似文献   
7.
The influence of dissolved inorganic nitrogen (DIN) enrichments on cell-normalized carbon uptake rate, chlorophyll a content, and apparent cell size of a picoeukaryote (<1 m) (Ostreococcus tauri, the smallest eukaryotic cell) from a natural summer phytoplanktonic assemblage (<200 m) in a northern Mediterranean Lagoon (Thau Lagoon) was studied in 20-L enclosures in June 1995. The natural planktonic community was incubated in situ for 24 h with initial ammonium and nitrate enrichments and compared to a control without enrichment. O. tauri cell-normalized productivity was estimated from the combination of flow cytometric (FCM) enumeration and 2-h (radioactive) carbonate incorporation measured on post-incubation size fractions (<1m). No difference between the effects of the two DIN sources of enrichment on the studied biological parameters was measured during this experiment. Growth of natural O. tauri was perturbed by the low DIN availability in the control with drastic changes in cell productivity, chlorophyll content, and cell cycle (from the variations in apparent cell size) as compared to the DIN sufficiency conditions. On the other hand, a very high specific growth rate for natural O. tauri, up to 8 day–1 under DIN enrichments, has been estimated from production and abundance data obtained during this experiment. This supports values measured in culture and suggests that the yearly high contribution of picophytoplankton to the total primary production in Thau Lagoon is likely to be due to their high growth rate rather than the previously suggested lack of grazing pressure.  相似文献   
8.
Using size-fractionation filtration (1 µm), we associatedcarboxylase activities (Rubisco, ß-carboxylases) andchlorophyll measurements with cell enumeration by flow cytometryat a permanent site of the central Ligurian Sea in the north-westernMediterranean Sea (73°25'N–7°51' E). The analyseswere carried out over a day/night cycle (at 30 m depth) followinga strong wind event, during the transition period from springmesotrophic to summer oligotrophic conditions. The highest valuesof Rubisco activity and ß-carboxylase activity perchlorophyll a (Chl a) for >1 µm cells were observedduring the light period of the cycle, reaching 18.9 and 4.3nmol CO2 (µg Chl a)–1 h–1, respectively. Thishigher activity is assumed to be correlated with a dominanceof nanoflagellates in the phytoplankton community. Such phytoplanktonspecies generally had higher ß-carboxylase activity,expressed as a percentage of Rubisco activity (the ßC/Rratio), than diatoms. Using flow cytometry analysis to enumeratethose cells <1 µm in size, we followed the values ofRubisco activity and pigment content expressed per cell, forpicophytoplankton cells. The photoautotrophic activity, measuredas the in vitro Rubisco activity for small picoeukaryote cells,was higher than for cyanobacteria cells with lower apparentcell size. These results suggested an optimum of CO2 assimilationreached by the pico- and nano-phytoplankton in accordance withthe cell size and growth rates from previous observations inthe literature.  相似文献   
9.
Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole.  相似文献   
10.
ABSTRACT: BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 mum; from a coastal Mediterranean lagoon) to a warming treatment (+3[degree sign]C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号