首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   28篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   11篇
  2013年   13篇
  2012年   2篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2008年   6篇
  2007年   7篇
  2006年   2篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   8篇
  1999年   11篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
Stoichiometric amounts of pure reverse gyrase, a type I topoisomerase from the archaebacterium Sulfolobus acidocaldarius were incubated at 75 degrees C with circular DNA containing a single-chain scission. After covalent closure by a thermophilic ligase and removal of bound protein molecules, negatively supercoiled DNA was produced. This finding, obtained in the absence of ATP, contrasts with the ATP-dependent positive supercoiling catalyzed by reverse gyrase and is interpreted as the result of enzyme binding to DNA at high temperature. Another consequence of reverse gyrase stoichiometric binding to DNA is the formation of a cleavable complex which results in the production of single-strand breaks in the presence of detergent. Like eubacterial type I topoisomerase (protein omega), reverse gyrase is tightly attached to the 5' termini of the cleaved DNA. In the light of these results, a comparison is tentatively made between reverse gyrase and the eubacterial type I (omega) and type II (gyrase) topoisomerases.  相似文献   
2.
All present-day hyperthermophiles studied so far (eitherBacteria orArchaea) contain a unique DNA topoisomerase, reverse gyrase, which probably helps to stabilize genomic DNA at high temperature. Herein the data relating this enzyme is reviewed and discussed from the perspective of the nature of the last detectable common ancestor and the origin of life. The sequence of the gene encoding reverse gyrase from an archaeon,Sulfolobus acidocaldarius, suggests that this enzyme contains both a helicase and a topoisomerase domains (Confalonieriet al.,Proc. Natl. Acad. Sci., 1993, 90, 4735). Accordingly, it has been proposed that reverse gyrase originated by the fusion of DNA helicase and DNA topoisomerase genes. If reverse gyrase is essential for life at high temperature, its composite structure suggests that DNA helicases and topoisomerases appeared independently and first evolved in a mesophilic world. Such scenario contradicts the hypothesis that a direct link connects present day hyperthermophiles to a hot origin of life. We discuss different patterns for the early cellular evolution in which reverse gyrase appeared either before the emergence of the last common ancestor ofArchaea, Bacteria andEucarya, or in a lineage common to the two procaryotic domains. The latter scenario could explain why all today hyperthermophiles are procaryotes.  相似文献   
3.
A DNA polymerase purified from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius was used to perform automated DNA amplification at 70 degrees C as well as site directed mutagenesis by Polymerase Chain Reaction (P.C.R.). The yield of amplification performed at optimum MgCl2 concentration for the Taq or the S. acidocaldarius DNA polymerase, for the same DNA target, was equivalent. The ability of S. acidocaldarius DNA polymerase to perform P.C.R. under less stringent requirement of MgCl2 concentration gives this enzyme a non-negligible advantage over the Taq DNA polymerase.  相似文献   
4.
Exosomes are nanoparticles (∼100 nm diameter) released from cells, which can transfer small RNAs and mRNA via the extracellular environment to cells at distant sites. We hypothesised that exosomes or the slightly larger microvesicles (100–300 nm) are released from the endometrial epithelium into the uterine cavity, and that these contain specific micro (mi)RNA that could be transferred to either the trophectodermal cells of the blastocyst or to endometrial epithelial cells, to promote implantation. The aim of this study was to specifically identify and characterise exosomes/microvesicles (mv) released from endometrial epithelial cells and to determine whether exosomes/mv are present in uterine fluid. Immunostaining demonstrated that the tetraspanins, CD9 and CD63 used as cell surface markers of exosomes are present on the apical surfaces of endometrial epithelial cells in tissue sections taken across the menstrual cycle: CD63 showed cyclical regulation. Exosome/mv pellets were prepared from culture medium of endometrial epithelial cell (ECC1 cells) and from uterine fluid and its associated mucus by sequential ultracentifugation. Exosomes/mv were positively identified in all preparations by FACS and immunofluorescence staining following exosome binding to beads. Size particle analysis confirmed the predominance of particles of 50–150 nm in each of these fluids. MiRNA analysis of the ECC1 cells and their exosomes/mv demonstrated sorting of miRNA into exosomes/mv: 13 of the 227 miRNA were specific to exosomes/mv, while a further 5 were not present in these. The most abundant miRNA in exosomes/mv were hsa-miR-200c, hsa-miR-17 and hsa-miR-106a. Bioinformatic analysis showed that the exosome/mv-specific miRNAs have potential targets in biological pathways highly relevant for embryo implantation. Thus exosomes/mv containing specific miRNA are present in the microenvironment in which embryo implantation occurs and may contribute to the endometrial-embryo cross talk essential for this process.  相似文献   
5.
6.
The replicon model has initiated a major research line in molecular biology: the study of DNA replication mechanisms. Until now, the majority of studies have focused on a limited set of model organisms, mainly from Bacteria or Opisthokont eukaryotes (human, yeasts) and a few viral systems. However, molecular evolutionists have shown that the living world is more complex and diverse than believed when the operon model was proposed. Comparison of DNA replication proteins in the three domains, Archaea, Bacteria, and Eukarya, have surprisingly revealed the existence of two distinct sets of non-homologous cellular DNA replication proteins, one in Bacteria and the other in Archaea and Eukarya, suggesting that the last universal common ancestor possibly still had an RNA genome. A major puzzle is the presence in eukaryotes of the unfaithful DNA polymerase alpha (Pol α) to prime Okazaki fragments. Interestingly, Pol α is specifically involved in telomere biosynthesis, and its absence in Archaea correlates with the absence of telomeres. The recent discovery of telomere-like GC quartets in eukaryotic replication origins suggests a link between Pol α and the overall organization of the eukaryotic chromosome. As previously proposed by Takemura, Pol α might have originated from a mobile element of viral origin that played a critical role in the emergence of the complex eukaryotic genomes. Notably, most large DNA viruses encode DNA replication proteins very divergent from their cellular counterparts. The diversity of viral replication machineries compared to cellular ones suggests that DNA and DNA replication mechanisms first originated and diversified in the ancient virosphere, possibly explaining why they are so many different types of replication machinerie.  相似文献   
7.
To explore the diversity of mobile genetic elements (MGE) associated with archaea of the phylum Thaumarchaeota, we exploited the property of most MGE to integrate into the genomes of their hosts. Integrated MGE (iMGE) were identified in 20 thaumarchaeal genomes amounting to 2 Mbp of mobile thaumarchaeal DNA. These iMGE group into five major classes: (i) proviruses, (ii) casposons, (iii) insertion sequence-like transposons, (iv) integrative-conjugative elements and (v) cryptic integrated elements. The majority of the iMGE belong to the latter category and might represent novel families of viruses or plasmids. The identified proviruses are related to tailed viruses of the order Caudovirales and to tailless icosahedral viruses with the double jelly-roll capsid proteins. The thaumarchaeal iMGE are all connected within a gene sharing network, highlighting pervasive gene exchange between MGE occupying the same ecological niche. The thaumarchaeal mobilome carries multiple auxiliary metabolic genes, including multicopper oxidases and ammonia monooxygenase subunit C (AmoC), and stress response genes, such as those for universal stress response proteins (UspA). Thus, iMGE might make important contributions to the fitness and adaptation of their hosts. We identified several iMGE carrying type I-B CRISPR-Cas systems and spacers matching other thaumarchaeal iMGE, suggesting antagonistic interactions between coexisting MGE and symbiotic relationships with the ir archaeal hosts.  相似文献   
8.
9.
Although coenzymeA (CoA) is essential in numerous metabolic pathways in all living cells, molecular characterization of the CoA biosynthetic pathway in Archaea remains undocumented. Archaeal genomes contain detectable homologues for only three of the five steps of the CoA biosynthetic pathway characterized in Eukarya and Bacteria. In case of phosphopantetheine adenylyltransferase (PPAT) (EC 2.7.7.3), the putative archaeal enzyme exhibits significant sequence similarity only with its eukaryotic homologs, an unusual situation for a protein involved in a central metabolic pathway. We have overexpressed in Escherichia coli, purified, and characterized this putative PPAT from the hyperthermophilic archaeon Pyrococcus abyssi (PAB0944). Matrix-assisted laser desorption ionization-time of flight mass spectrometry and high performance liquid chromatography measurements are consistent with the presence of a dephospho-CoA (dPCoA) molecule tightly bound to the polypeptide. The protein indeed catalyzes the synthesis of dPCoA from 4'-phosphopantetheine and ATP, as well as the reverse reaction. The presence of dPCoA stabilizes PAB0944, as it induces a shift from 76 to 82 degrees C of the apparent Tm measured by differential scanning microcalorimetry. Potassium glutamate was found to stabilize the protein at 400 mm. The enzyme behaves as a monomeric protein. Although only distantly related, secondary structure prediction indicates that archaeal and eukaryal PPAT belong to the same nucleotidyltransferase superfamily of bacterial PPAT. The existence of operational proteins highly conserved between Archaea and Eukarya involved in a central metabolic pathway challenge evolutionary scenarios in which eukaryal operational proteins are strictly of bacterial origin.  相似文献   
10.
Archaea, members of the third domain of life, are bacterial-looking prokaryotes that harbour many unique genotypic and phenotypic properties, testifying for their peculiar evolutionary status. The archaeal ancestor was probably a hyperthermophilic anaerobe. Two archaeal phyla are presently recognized, the Euryarchaeota and the Crenarchaeota. Methanogenesis was the main invention that occurred in the euryarchaeal phylum and is now shared by several archaeal groups. Adaptation to aerobic conditions occurred several times independently in both Euryarchaeota and Crenarchaeota. Recently, many new groups of Archaea that have not yet been cultured have been detected by PCR amplification of 16S ribosomal RNA from environmental samples. The phenotypic and genotypic characterization of these new groups is now a top priority for further studies on archaeal evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号