首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   94篇
  国内免费   9篇
  2017年   8篇
  2015年   17篇
  2014年   16篇
  2013年   18篇
  2012年   25篇
  2011年   25篇
  2010年   20篇
  2009年   22篇
  2008年   26篇
  2007年   30篇
  2006年   30篇
  2005年   16篇
  2004年   24篇
  2003年   26篇
  2002年   14篇
  2001年   30篇
  2000年   21篇
  1999年   26篇
  1998年   12篇
  1997年   14篇
  1996年   15篇
  1995年   13篇
  1994年   9篇
  1993年   7篇
  1992年   20篇
  1991年   13篇
  1990年   23篇
  1989年   15篇
  1988年   10篇
  1987年   14篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   7篇
  1980年   6篇
  1979年   8篇
  1978年   11篇
  1977年   7篇
  1972年   5篇
  1965年   5篇
  1959年   8篇
  1958年   23篇
  1957年   26篇
  1956年   26篇
  1955年   22篇
  1954年   22篇
  1953年   13篇
  1952年   13篇
  1951年   10篇
  1950年   9篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
Sulfide Production from Cysteine by Desulfovibrio desulfuricans   总被引:1,自引:0,他引:1       下载免费PDF全文
Two rumen nitrate-reducing isolates of Desulfovibrio desulfuricans were found to hydrolyze cysteine with the production of sulfide and pyruvate. When cultured on agar medium containing yeast extract with nitrate as the primary electron acceptor and ferrous chloride as the indicator, blackening of colonies occurred. The blackening of colonies appeared sooner and was more intense when either cysteine or sulfate was added to the culture medium with nitrate present.  相似文献   
5.
Isolation of a Cellodextrinase from Bacteroides succinogenes   总被引:21,自引:13,他引:8       下载免费PDF全文
An enzyme which released the cellobiose group from p-nitrophenyl cellobioside was isolated from the periplasmic space of Bacteroides succinogenes grown on Avicel crystalline cellulose in a continuous cultivation system and separated from endoglucanases by column chromatography. The molecular weight of the enzyme was approximately 40,000, as estimated by gel filtration. The enzyme has an isoelectric point of 4.9. The enzyme exhibited low hydrolytic activity on acid-swollen cellulose and practically no activity on carboxymethyl cellulose, Avicel cellulose, and cellobiose, but it hydrolyzed p-nitrophenyl lactoside and released cellobiose from cellotriose and from higher cello-oligosaccharides. These data demonstrate that the enzyme is a cellodextrinase with an exotype of function.  相似文献   
6.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   
7.
A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme.  相似文献   
8.
Fibrobacter succinogenes subsp. succinogenes S85, formerly Bacteroides succinogenes, adheres to crystalline cellulose present in the culture medium. When the cells are suspended in buffer, adhesion is enhanced by increasing the ionic strength. Heat, glutaraldehyde, trypsin, and pronase treatments markedly reduce the extent of adhesion. Treatment with dextrinase, modification of amino and carboxyl groups with Formalin or other chemical agents, and inclusion of either albumin (1%) or Tween 80 (0.5%) do not decrease the degree of adhesion. Adherence-defective mutants isolated by their inability to bind to cellulose exhibited different growth characteristics. Class 1 mutants grew on glucose, cellobiose, amorphous cellulose, and crystalline cellulose. Class 3 mutants grew on glucose and cellobiose but not on amorphous or crystalline cellulose. No substantial changes were detected in the endoglucanase, cellobiosidase, and cellobiase activities of the wild type and the mutants. These data suggest that adhesion to crystalline cellulose is specific and that it involves surface proteins.  相似文献   
9.
10.
Fusion proteins in biotechnology.   总被引:9,自引:0,他引:9  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号