全文获取类型
收费全文 | 101篇 |
免费 | 9篇 |
专业分类
110篇 |
出版年
2022年 | 1篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 8篇 |
2014年 | 5篇 |
2013年 | 4篇 |
2012年 | 4篇 |
2011年 | 8篇 |
2010年 | 7篇 |
2009年 | 1篇 |
2008年 | 7篇 |
2007年 | 4篇 |
2006年 | 8篇 |
2005年 | 4篇 |
2004年 | 3篇 |
2003年 | 1篇 |
2002年 | 1篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 3篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1980年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有110条查询结果,搜索用时 0 毫秒
1.
For several species of lepidoptera, most of the approximately 350-bp
mitochondrial control-region sequences were determined. Six of these
species are in one genus, Jalmenus; are closely related; and are believed
to have undergone recent rapid speciation. Recent speciation was supported
by the observation of low interspecific sequence divergence. Thus, no
useful phylogeny could be constructed for the genus. Despite a surprising
conservation of control-region length, there was little conservation of
primary sequences either among the three lepidopteran genera or between
lepidoptera and Drosophila. Analysis of secondary structure indicated only
one possible feature in common--inferred stem loops with higher-than-random
folding energies-- although the positions of the structures in different
species were unrelated to regions of primary sequence similarity. We
suggest that the conserved, short length of control regions is related to
the observed lack of heteroplasmy in lepidopteran mitochondrial genomes. In
addition, determination of flanking sequences for one Jalmenus species
indicated (i) only weak support for the available model of insect 12S rRNA
structure and (ii) that tRNA translocation is a frequent event in the
evolution of insect mitochondrial genomes.
相似文献
2.
MF Perutz 《Current opinion in structural biology》1996,6(6):848-858
Several dominantly inherited, late onset, neurodegenerative diseases are due to expansion of CAG repeats, leading to expansion of glutamine repeats in the affected proteins. These proteins are of very different sizes and, with one exception, show no sequence homology to known proteins or to each other; their functions are unknown. In some, the glutamine repeat starts near the N-terminus, in another near the middle and in another near the C-terminus, but regardless of these differences, no disease has been observed in individuals with fewer than 37 repeats, and absence of disease has never been found in those with more than 41 repeats. Protein constructs with more than 41 repeats are toxic to E. coli and to CHO cells in culture, and they elicit ataxia in transgenic mice. These observations argue in favour of a distinct change of structure associated with elongation beyond 37–41 glutamine repeats. The review describes experiments designed to find out what these structures might be and how they could influence the properties of the proteins of which they form part. Poly-
-glutamines form pleated sheets of β-strands held together by hydrogen bonds between their amides. Incorporation of glutamine repeats into a small protein of known structure made it associate irreversibly into oligomers. That association took place during the folding of the protein molecules and led to their becoming firmly interlocked by either strand- or domain-swapping. Thermodynamic considerations suggest that elongation of glutamine repeats beyond a certain length may lead to a phase change from random coils to hydrogen-bonded hairpins. Possible mechanisms of expansion of CAG repeats are discussed in the light of looped DNA model structures. 相似文献
3.
Suppressors of the temperature sensitivity of DNA polymerase α mutations in Saccharomyces cerevisiae
We have isolated two high copy, allele-specific suppressors of the temperature sensitivity of mutations in POL1, the gene that encodes the catalytic subunit of DNA polymerase α in the yeast Saccharomyces cerevisiae. Both genes, PSP1 and PSP2, also partially suppressed a mutation in POL3 which encodes DNA polymerase δ, and both also affected a mutation in CDC6, which acts in initiation of DNA replication. Suppression was not general, since ts mutations in several genes unrelated
to replication were not affected. PSP1 was partially effective on low-copy-number vectors, while PSP2 required high copy numbers. The presence of suppressing plasmids did not alter the steady-state level of Pol1 protein, so
suppression does not appear to be due to an increase in production or stability of Pol1p. Deletion of either PSP gene or both in combination resulted in apparently normal viable cells. While neither gene is homologous to genes with known
functions, PSP1 and PSP2 both have unusual amino acid compositions: PSP1 is rich in asparagine and glutamine, while PSP2 is rich in asparagine and contains “RGG” motifs that have been associated with RNA-binding proteins. We also describe a transposon-mediated
strategy that should be generally effective for rapid characterization of multicopy suppressors.
Received: 20 July 1997 / Accepted: 1 October 1997 相似文献
4.
Drew BG Carey AL Natoli AK Formosa MF Vizi D Reddy-Luthmoodoo M Weir JM Barlow CK van Hall G Meikle PJ Duffy SJ Kingwell BA 《Journal of lipid research》2011,52(3):572-581
We recently demonstrated that reconstituted high-density lipoprotein (rHDL) modulates glucose metabolism in humans via both AMP-activated protein kinase (AMPK) in muscle and by increasing plasma insulin. Given the key roles of both AMPK and insulin in fatty acid metabolism, the current study investigated the effect of rHDL infusion on fatty acid oxidation and lipolysis. Thirteen patients with type 2 diabetes received separate infusions of rHDL and placebo in a randomized, cross-over study. Fatty acid metabolism was assessed using steady-state tracer methodology, and plasma lipids were measured by mass spectrometry (lipidomics). In vitro studies were undertaken in 3T3-L1 adipocytes. rHDL infusion inhibited fasting-induced lipolysis (P = 0.03), fatty acid oxidation (P < 0.01), and circulating glycerol (P = 0.04). In vitro, HDL inhibited adipocyte lipolysis in part via activation of AMPK, providing a possible mechanistic link for the apparent reductions in lipolysis observed in vivo. In contrast, circulating NEFA increased after rHDL infusion (P < 0.01). Lipidomic analyses implicated phospholipase hydrolysis of rHDL-associated phosphatidylcholine as the cause, rather than lipolysis of endogenous fat stores. rHDL infusion inhibits fasting-induced lipolysis and oxidation in patients with type 2 diabetes, potentially through both AMPK activation in adipose tissue and elevation of plasma insulin. The phospholipid component of rHDL also has the potentially undesirable effect of increasing circulating NEFA. 相似文献
5.
6.
Formosa T 《Biochimica et biophysica acta》2012,1819(3-4):247-255
7.
8.
Darren C. Henstridge Brian G. Drew Melissa F. Formosa Alaina K. Natoli David Cameron-Smith Stephen J. Duffy Bronwyn A. Kingwell 《Nitric oxide》2009,21(2):126-131
Nitric oxide (NO) has been implicated as an important signaling molecule in the insulin-independent, contraction-mediated glucose uptake pathway and may represent a novel strategy for blood glucose control in patients with type 2 diabetes (T2DM). The current study sought to determine whether the NO donor, sodium nitroprusside (SNP) increases glucose uptake in primary human skeletal muscle cells (HSkMC) derived from both healthy individuals and patients with T2DM. Vastus lateralis muscle cell cultures were derived from seven males with T2DM (aged 54 ± 2 years, BMI 31.7 ± 1.2 kg/m2, fasting plasma glucose 9.52 ± 0.80 mmol/L) and eight healthy individuals (aged 46 ± 2 years, BMI 27.1 ± 1.5 kg/m2, fasting plasma glucose 4.69 ± 0.12 mmol/L). Cultures were treated with both therapeutic (0.2 and 2 μM) and supratherapeutic (3, 10 and 30 mM) concentrations of SNP. An additional NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) was also examined at a concentration of 50 μM. Glucose uptake was significantly increased following both 30 and 60 min incubations with the supratherapeutic SNP treatments (P = 0.03) but not the therapeutic SNP doses (P = 0.60) or SNAP (P = 0.54). There was no difference in the response between the healthy and T2DM cell lines with any treatment or dose. The current study demonstrates that glucose uptake is elevated by supratherapeutic, but not therapeutic doses of SNP in human primary skeletal muscle cells derived from both healthy volunteers and patients with T2D. These data confirm that nitric oxide donors have potential therapeutic utility to increase glucose uptake in humans, but that SNP only achieves this in supratherapeutic doses. Further study to delineate mechanisms and the therapeutic window is warranted. 相似文献
9.
Previously we showed that the yeast proteins Spt16 (Cdc68) and Pob3 are physically associated, and interact physically and genetically with the catalytic subunit of DNA polymerase alpha, Pol1 [Wittmeyer and Formosa (1997) Mol. Cell. Biol. 17, 4178-4190]. Here we show that purified Spt16 and Pob3 form a stable, abundant, elongated heterodimer and provide evidence that this is the functional form of these proteins. Genetic interactions between mutations in SPT16 and POB3 support the importance of the Spt16-Pob3 interaction in vivo. Spt16, Pob3, and Pol1 proteins were all found to localize to the nucleus in S. cerevisiae. A portion of the total cellular Spt16-Pob3 was found to be chromatin-associated, consistent with the proposed roles in modulating chromatin function. Some of the Spt16-Pob3 complex was found to copurify with the yeast DNA polymerase alpha/primase complex, further supporting a connection between Spt16-Pob3 and DNA replication. 相似文献
10.
Iwanczyk J Sadre-Bazzaz K Ferrell K Kondrashkina E Formosa T Hill CP Ortega J 《Journal of molecular biology》2006,363(3):648-659
The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein. Recent studies have shown that the sequences of Blm10 and PA200 each contain multiple HEAT-repeats and that each binds to the ends of mature proteasomes, suggesting a common structural and biochemical function. In order to advance structural studies, we have developed an efficient purification method that produces high yields of stoichiometric Blm10-mature yeast 20 S proteasome complexes and we constructed a three-dimensional (3D) model of the Blm10-20 S complex from cryo-electron microscopy images. This reconstruction shows that Blm10 binds in a defined orientation to both ends of the 20 S particle and contacts all the proteasome alpha subunits. Blm10 displays the solenoid folding predicted by the presence of multiple HEAT-like repeats and the axial gates on the alpha rings of the proteasome appear to be open in the complex. We also performed a genetic analysis in an effort to identify the physiological role of Blm10. These experiments, however, did not reveal a robust phenotype upon gene deletion, overexpression, or in a screen for synthetic effects. This leaves the physiological role of Blm10 unresolved, but challenges earlier findings of a role in DNA repair. 相似文献