首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2011年   1篇
  2008年   1篇
  2001年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The majority of biological processes are controlled and regulated by an intricate network of thousands of interacting proteins. Identifying and understanding the key components of these protein networks, especially those that play a critical role in disease, is a challenge that promises to dramatically alter our current approach to healthcare. To facilitate this process, we have developed a method for the rapid construction of a chromosomally integrated, bacterial reverse two-hybrid system (RTHS) that enables the identification of interacting protein partners. Chromosomal integration of the RTHS enables stable protein expression, free of plasmid copy-number effects, as well as eliminating false positives arising from plasmid ejection. We have utilized this approach to identify the interactions used by the influenza virus NS1 protein to silence the host's antiviral defences.  相似文献   
2.
The molecular chaperone Hsp90 assists a subset of cellular proteins and is essential in eukaryotes. A cohort of cochaperones contributes to and regulates the multicomponent Hsp90 machine. Unlike the biochemical activities of the cochaperone p23, its in vivo functions and the structure-function relationship remain poorly understood, even in the genetically tractable model organism Saccharomyces cerevisiae. The SBA1 gene that encodes the p23 ortholog in this species is not an essential gene. We found that in the absence of p23/Sba1p, yeast and mammalian cells are hypersensitive to Hsp90 inhibitors. This protective function of Sba1p depends on its abilities to bind Hsp90 and to block the Hsp90 ATPase and inhibitor binding. In contrast, the protective function of Sba1p does not require the Hsp90-independent molecular chaperone activity of Sba1p. The structure-function analysis suggests that Sba1p undergoes considerable structural rearrangements upon binding Hsp90 and that the large size of the p23/Sba1p-Hsp90 interaction surface facilitates maintenance of high affinity despite sequence divergence during evolution. The large interface may also contribute to preserving a protective function in an environment in which Hsp90 inhibitory compounds can be produced by various microorganisms.  相似文献   
3.
Special search for frameshift mutations, which are suppressed by the cytoplasmic [PSI] factor and by omnipotent nonsense suppressors (recessive mutations in theSUP35and SUP45genes), partially inactivating a translation termination complex, was initiated in theLYS2gene in the yeast Saccharomyces cerevisiae.Mutations were obtained after exposure to UV light and treatment with a mixture of 1,6- and 1,8-dinitropyrene (DNP). This mixture was shown to induce mutations of the frameshift type with a high frequency. The majority of these mutations were insertions of one A or T, which is in good agreement with the data obtained in studies of DNP-induced mutagenesis in other eukaryotes. Frameshift suppression was shown on the example of the mutation obtained in this work (lys2-90), which carried the insertion of an extra T in the sequence of five T. This frameshift suppression was first shown to occur in the presence of the [PSI] factor (i.e., due to the prionization of the translation release factor eRF3) and as a result of mutations in genes SUP35orSUP45, which partially inactivate translation termination factors eRF3 and eRF1, respectively. Alternative mechanisms of programmed translational frameshifting in the course of translation and the possibility of enhancing the effectiveness of such frameshifting in the presence of the [PSI] factor are considered.  相似文献   
4.
Special search for frameshift mutations, which are suppressed by the cytoplasmic [PSI] factor and by omnipotent nonsense suppressors (recessive mutations in the SUP35 and SUP45 genes), partially inactivating a translation termination complex, was initiated in the LYS2 gene in the yeast Saccharomyces cerevisiae. Mutations were obtained after exposure to UV light and treatment with a mixture consisting of 1.6- and 1.8-dinitropyrene (DNP). This mixture was shown to induce mutations of the frameshift type with a high frequency. The majority of these mutations were insertions of one A or T, which is in good agreement with the data obtained in studies of DNP-induced mutagenesis in other eukaryotes. Frameshift suppression in yeast was first shown on the example of the mutation obtained in this work (lys2-90), which carried the insertion of an extra T in the sequence of five T. This frameshift suppression was shown to occur in the presence of the [PSI] factor (i.e., due to the prion form of the translation release factor eRF3) and as a result of mutations in genes SUP35 or SUP45, which partially inactivate translation termination factors eRF3 and eRF1, respectively. Alternative mechanisms of programmed translational frameshifting in the course of translation and the possibility of enhancing the effectiveness of such frameshifting in the presence of the [PSI] factor are considered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号