首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   2篇
  124篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1981年   1篇
  1979年   1篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   5篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1965年   2篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
1.
2.
Gravitation influence on lung function was investigated in 115 patients and 21 healthy persons. Changing of an examinee's position from vertical into a horizontal one causes changes in lung function in health and disease. Characteristic features of lung function were determined for each group of examinees in order to improve the diagnosis and differential diagnosis of bronchial cancer and nonspecific chronic pulmonary diseases with a similar x-ray picture. A study of pulmonary ventilation and blood supply of the lungs in vertical and horizontal postures in Hodgkin's disease patients led to a conclusion that irradiation of patients seemed more effective in a phase of deep breath. It made it possible to reduce radiation exposure of healthy parts in a zone to be irradiated.  相似文献   
3.
The nanowire (NW) detection is one of the fast-acting and high-sensitive methods, which can recognize potentially relevant protein molecules. A NW-biosensor based on the silicon-on-insulator (SOI)-structures has been used for biospecific label-free real time detection of the NFATc1 (D-NFATc1) oncomarker. For this purpose, SOI-nanowires (NWs) were modified with aptamers against NFATc1 used as molecular probes. It was shown that using this biosensor it is possible to reach sensitivity of 10?15 M. This sensitivity was comparable to that of the NW-biosensor with immobilized antibodies used as macromolecular probes. The results demonstrate that approaches used in this study are promising for development of sensor elements for high-sensitive diagnostics of diseases.  相似文献   
4.
Using a potential-sensitive fluorescent probe diS-C3-(5), the formation of the membrane (K+-diffusion) potential, delta psi, in the myometrium sarcolemmal vesicular fraction was demonstrated. The magnitude of this potential corresponds to that calculated according to the Nernst equation, is time-stable (characteristic dissociation time--3-5 min) and temperature-dependent and is generated upon the substitution of the anion (Cl- for gluconate-) and the compensating cation (Na+ for Tris+, choline+). The change in delta psi from -61 to 0 mV leads to the activation of passive Ca2+ efflux from the vesicles (with choline+ as the compensating cation in the dilution medium). At the same value of the potential, i. e., -61 mV, the substitution of choline in the dilution medium for Na+ or Li+ stimulates the passive release of Ca2+. Co2+, Mn2+ and D-600 suppress this process by 15-20% in depolarized vesicles which points to the inhibition of Ca2+ release with an alteration of the membrane potential value from 0 to -61 mV (20%). The potential-dependent component of passive Ca2+ transport is characterized by saturation with the substrate (Km = 0.5 mM). The dependence of Ca2+ flux release from the sarcolemmal vesicles on the membrane potential value (-60-+27 mV) is bell-shaped and qualitatively relative to the volt-amper characteristics of the steady state Ca2+ flux in single smooth muscle cells. Analysis of experimental results revealed that the potential-dependent component of passive Ca2+ transport in myometrium sarcolemmal vesicles is determined by the non-activated Ca2+ conductivity of plasma membrane.  相似文献   
5.
Peptide toxins of arthropods are one of the potential sources of bioactive substances. Toxins are able to bind to calcium channels and block them. Ca2+ ions play an important role in many cell processes, in particular, in apoptosis. In this work, we study the effect of some arthropod toxins on intracellular processes associated with the induction of apoptosis. Synthetic analogs of U5‐scytotoxin‐Sth1a, ω‐hexatoxin‐Hv1a, ω‐theraphotoxin‐Hhn2a, and μ‐agatoxin‐Aa1a toxins—inhibitors of calcium L, P, and Q channels and sodium channels were used in the study. Apoptosis was induced by AC‐1001 H3 peptide. We study the effect of toxins on the level of apoptosis, ROS, mitochondrial potential, GSH, and ATP in CHO‐K1 cells. We show that all the tested toxins are able to dose dependently block the induction of apoptosis triggered by AC‐1001 H3 and reduce the level of natural apoptosis in CHO‐K1 cells. Cell incubation with apoptosis inducer AC‐1001 H3 in the presence and absence of toxins causes an increase in the intracellular concentrations of ROS, ATP, and mitochondrial potential and decreases the GSH concentration. The present study reveals the antiapoptotic effect of a number of arthropod peptide toxins. The toxins studied can represent a novel approach used in the treatment of pathologies associated with the activation of apoptotic mechanisms.  相似文献   
6.

New Books

V. B. Krasovitski $\overset{\lower0.5em\hbox{$\overset{\lower0.5em\hbox{ , Nonlinear regular oscillations in nonequilibrium plasma and gaseous media (Folio, Kharkov, 2000), vols. 1, 2  相似文献   
7.
Skeletal muscle development in the vertebrate embryo critically depends on the myogenic regulatory factors (MRFs) including MRF4 and Myf5. Both genes exhibit distinct expression patterns during mouse embryogenesis, although they are genetically closely linked with multiple regulatory elements dispersed throughout the common gene locus. MRF4 has a biphasic expression profile, first in somites and later in foetal skeletal muscles. Here, we demonstrate by transgenic analysis that elements within a 7.5-kb promoter fragment of the MRF4 gene are sufficient to drive the embryonic wave of expression very similar to the endogenous gene in somites of mouse embryos. In contrast, a 3-kb fragment of the proximal promoter fails to support expression in the myotome, suggesting that essential cis-acting elements are located between -7.5 and -3 kb upstream of MRF4. Further analysis of this sequence delimits an essential region between -6.6 and -5.6 kb that together with the 3-kb promoter fragment directs transgene expression in the epaxial myotome of all somites during the appropriate developmental period. These data provide evidence that the partly overlapping expression patterns of Mrf4 and Myf5 in somites are controlled by distinct regulatory elements. We also show that 11.4 kb sequence upstream of MRF4, including the promoter and the somitic control region identified in this study, is not sufficient to elicit target specificity towards the strong Myf5 (-58/-48 kb) enhancer, suggesting that additional yet unidentified elements are necessary to convey promoter selectivity and protect the MRF4 gene from this enhancer.  相似文献   
8.
9.
10.
Deletion of the highly conserved gene for the major Ca2+ efflux pump, Plasma membrane calcium/calmodulin‐dependent ATPase 4b (Pmca4b), in the mouse leads to loss of progressive and hyperactivated sperm motility and infertility. Here we first demonstrate that compared to wild‐type (WT), Junctional adhesion molecule‐A (Jam‐A) null sperm, previously shown to have motility defects and an abnormal mitochondrial phenotype reminiscent of that seen in Pmca4b nulls, exhibit reduced (P < 0.001) ATP levels, significantly (P < 0.001) greater cytosolic Ca2+ concentration ([Ca2+]c) and ~10‐fold higher mitochondrial sequestration, indicating Ca2+ overload. Investigating the mechanism involved, we used co‐immunoprecipitation studies to show that CASK (Ca2+/calmodulin‐dependent serine kinase), identified for the first time on the sperm flagellum where it co‐localizes with both PMCA4b and JAM‐A on the proximal principal piece, acts as a common interacting partner of both. Importantly, CASK binds alternatively and non‐synergistically with each of these molecules via its single PDZ (PDS‐95/Dlg/ZO‐1) domain to either inhibit or promote efflux. In the absence of CASK–JAM‐A interaction in Jam‐A null sperm, CASK–PMCA4b interaction is increased, resulting in inhibition of PMCA4b's enzymatic activity, consequent Ca2+ accumulation, and a ~6‐fold over‐expression of constitutively ATP‐utilizing CASK, compared to WT. Thus, CASK negatively regulates PMCA4b by directly binding to it and JAM‐A positively regulates it indirectly through CASK. The decreased motility is likely due to the collateral net deficit in ATP observed in nulls. Our data indicate that Ca2+ homeostasis in sperm is maintained by the relative ratios of CASK–PMCA4b and CASK–JAM‐A interactions. J. Cell. Physiol. 227: 3138–3150, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号