首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  13篇
  2012年   1篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Folbergrová  J.  Lisý  V.  Haugvicová  R.  Štastný  F. 《Neurochemical research》1997,22(5):637-646
Specific [3H]glutamate binding to synaptic membranes from the cerebral cortex and hippocampus of 7-, 12- and 18-day-old rats was examined, both in control animals and during seizures induced by homocysteine. In the cerebral cortex a transient peak of glutamate binding was observed in 7-day-old group, whereas in the hippocampus it occurred in 12-day-old animals. Total specific [3H]glutamate binding was not influenced by preceding seizure activity in either of the age groups and both the studied regions. NMDA- and QA-sensitive glutamate bindings represent the highest portion of the total binding. Moreover, NMDA-sensitive binding in the cerebral cortex of 7-day-old rats is significantly higher as compared to the two more mature groups. The proportion of individual receptor subtypes on total binding in each age group was not influenced by preceding seizure activity. However, NMDA-sensitive binding in the hippocampus of 12-day-old rats, sacrificed during homocysteine-induced seizures, was significantly increased as compared to corresponding controls. In contrast to the effect of NMDA, AMPA, kainate and quisqualate which displaced to a different extent [3H]glutamate binding, homocysteine had no effect when added to membrane preparations. Similarly, [3H]CPP and [3H]AMPA bindings were not affected in the presence of homocysteine. It thus seems unlikely that homocysteine is an effective agonist for conventional ionotropic glutamate receptors. Its potential activity at some of the modulatory sites at the NMDA receptor channel complex or at metabotropic receptors has to be clarified in further experiments.  相似文献   
2.
The Na+, K+-ATPase activity and its response to vanadate inhibition was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats. The enzyme was inhibited by vanadate in a dose-dependent manner in all these age groups. Furthermore, there was a different sensitivity towards vanadate during postnatal development; the concentration of V+5 needed for 50% inhibiton of Na+, K+-ATPase was 1.1×10–6M, 2×10–7M and 4.4×10–7M for 7-, 12- and 18-day-old rats, respectively. It is suggested that the different sensitivity of Na+, K+-ATPase towards vanadate inhibition during postnatal development might be due to age-dependent changes in the ratio of various cell types.Special Issue dedicated to Dr. O. H. Lowry.  相似文献   
3.
The Na+,K+-ATPase activity was investigated in cerebral cortex homogenates of 7-, 12- and 18-day-old rats in which seizures were induced by systemic (i.p.) administration of bicuculline. Na+,K+-ATPase activities in control animals increased during postnatal development, but they were not significantly influenced by seizure activity when determined under optimal conditions in vitro. Although the ratio of neuronal vs. non-neuronal cells in cortical samples of 7-, 12- and 18-day-old rats was different, there was a remarkable similarity in the activation curves for K+, obtained for Na+,K+-ATPase of all age groups under normal conditions; 50% of enzyme activities were attained at 1 mmol.l-1 K+ and the maximal activities were found around 10 mmol.l-1 K+. The activation curves for K+ in rats with bicuculline-induced seizures were not significantly different from those of the controls.  相似文献   
4.
Data on convulsant and anticonvulsant action of drugs influencing excitatory amino acid receptors in developing rats are reviewed. Agonists of NMDA type of receptors NMDA and homocysteic acid, elicited an age-related seizure pattern--flexion, emprosthotonic seizures--in the first three postnatal weeks of rats. Generalized clonic-tonic seizures appeared only after a longer latency. Kainic acid administration resulted in epileptic automatisms and later in minimal, clonic seizures followed by generalized tonic-clonic seizures. A decrease of sensitivity to convulsant action with age is a general rule for all agonists tested. Different anticonvulsant action of NMDA and nonNMDA antagonists was demonstrated in a model of generalized tonic-clonic seizures induced by pentetrazol, whereas their action against epileptic afterdischarges elicited by electrical stimulation of cerebral cortex was similar. Again, higher efficacy in younger animals was a rule. As far as metabotropic glutamate receptors are concerned, agonists of groups II and III were shown to protect against convulsant action of homocysteic acid in immature rats and an antagonist of group I receptors MPEP suppressed the tonic phase of generalized tonic-clonic seizures induced by pentetrazol more efficiently in younger than in more mature rat pups. Unfortunately, a higher sensitivity to the action of antagonists of ionotropic glutamate receptors was demonstrated also for unwanted side effects (motor functions were compromized). In contrast, glutamate metabotropic receptor antagonist MPEP did not exhibit any serious side effects in rat pups.  相似文献   
5.
The present study examined the effects of a free radical scavenger, N-tert-butyl-alfa-phenylnitrone (PBN) on lithium-pilocarpine-induced status epilepticus (SE) and its short-term consequences in rats 12 (P12) or 25 (P25) days old. PBN (2 x 100 mg/kg i.p.) was injected according to the following schedules: 1) PBN-pretreated animals received the first dose 30 min prior to pilocarpine, the second dose was given 1 min after SE onset, and 2) PBN-treated animals received the first dose of PBN 1 min after SE onset and the second one 60 min later. Paraldehyde was administered to decrease mortality. Effects of PBN were highly age-dependent. In P25 group, PBN-pretreatment increased latency to SE onset and significantly suppressed the severity of motor manifestation of SE. Both PBN pretreatment and treatment improved recovery after SE. In contrast, administration of PBN in P12 animals did not affect SE pattern or recovery after SE. Administration of PBN had no effects on the motor performance of animals 3 and 6 days after SE. Neuronal damage was examined 24 h and 7 days after SE using Fluoro-Jade B staining. Mild neuroprotective effects of PBN in hippocampal fields CA1 and CA3 occurred in P25 rats in both experimental schedules. In contrast, administration of PBN aggravated neuronal injury in the hippocampus in P12 rats. Administration of PBN to intact rats did not induce neurodegeneration in either age group.  相似文献   
6.
Our previous work demonstrated the marked decrease of mitochondrial complex I activity in the cerebral cortex of immature rats during the acute phase of seizures induced by bilateral intracerebroventricular infusion of dl-homocysteic acid (600 nmol/side) and at short time following these seizures. The present study demonstrates that the marked decrease (~60%) of mitochondrial complex I activity persists during the long periods of survival, up to 5 weeks, following these seizures, i.e. periods corresponding to the development of spontaneous seizures (epileptogenesis) in this model of seizures. The decrease was selective for complex I and it was not associated with changes in the size of the assembled complex I or with changes in mitochondrial content of complex I. Inhibition of complex I was accompanied by a parallel, up to 5 weeks lasting significant increase (15–30%) of three independent mitochondrial markers of oxidative damage, 3-nitrotyrosine, 4-hydroxynonenal and protein carbonyls. This suggests that oxidative modification may be most likely responsible for the sustained deficiency of complex I activity although potential role of other factors cannot be excluded. Pronounced inhibition of complex I was not accompanied by impaired ATP production, apparently due to excess capacity of complex I documented by energy thresholds. The decrease of complex I activity was substantially reduced by treatment with selected free radical scavengers. It could also be attenuated by pretreatment with (S)-3,4-DCPG (an agonist for subtype 8 of group III metabotropic glutamate receptors) which had also a partial antiepileptogenic effect.It can be assumed that the persisting inhibition of complex I may lead to the enhanced production of reactive oxygen and/or nitrogen species, contributing not only to neuronal injury demonstrated in this model of seizures but also to epileptogenesis.  相似文献   
7.
Abstract— The levels of ATP, P-creatine, glucose, glycogen, lactate, glutamate and ammonia were measured in mouse brain after administration of the convulsive agent methionine sulphoximine (MSO). No changes were observed in ATP and P-creatine levels either before or during the seizures. Lactate levels were unchanged until the onset of seizures (4–5 hr) at which time the levels increased an average of 65 per cent. Glucose and glycogen levels increased progressively. Just before the onset of seizures the levels had increased 95 and 62 per cent, respectively. During the seizures both substances had increased a total of 130 per cent. Comparable changes were found in cerebral cortex, cerebellum and subcortical forebrain. Through the use of quantitative histochemical methods it was found that the greatest increases in glycogen occurred in layers I and III (layers II and IV were not analysed). Progressively smaller changes were found in layers V and VI and no increase at all was found in the subjacent white matter. Glucose, in contrast to glycogen, increased to about the same degree in all cerebral layers and in subjacent white matter. The increase in glycogen after MSO administration may be related to the fact that MSO also causes an increase in the ratio of brain to serum glucose levels. This would indicate that an increase in intracellular glucose had occurred. Ammonia levels were increased 300–400 per cent in both cerebrum and cerebellum. A time study in cerebellum showed that the increase begins early and reaches maximal levels long before the onset of seizures. Glutamate levels were reduced by small but statistically significant amounts in both cerebrum and cerebellum. Administration of methionine sulphoximine completely prevented seizures and the increase in lactate, but did not prevent the increases in glycogen and glucose. The rise in ammonia was reduced but not prevented. During 20 sec of complete ischaemia (decapitation) ATP, P-creatine and glucose fell somewhat more rapidly than normal in brain of animals undergoing MSO seizures. From the changes it was calculated that the metabolic rate had been increased about 20 per cent by the seizure. A new sensitive and specific enzymic method for determination of tissue ammonia is presented together with evised enzymic procedures for lactate and glutamate.  相似文献   
8.
Mitochondrial dysfunction has been identified as one potential cause of epileptic seizures. Impaired mitochondrial function has been reported for the seizure focus of patients with temporal lobe epilepsy and Ammon's horn sclerosis and of adult and immature animal models of epilepsy. Since mitochondrial oxidative phosphorylation provides the major source of ATP in neurons and mitochondria participate in cellular Ca(2+) homeostasis and generation of reactive oxygen species, their dysfunction strongly affects neuronal excitability and synaptic transmission. Therefore, mitochondrial dysfunction is proposed to be highly relevant for seizure generation. Additionally, mitochondrial dysfunction is known to trigger neuronal cell death, which is a prominent feature of therapy-resistant epilepsy. For this reason mitochondria have to be considered as promising targets for neuroprotective strategies in epilepsy.  相似文献   
9.
Transient ischemia is known to lead to a long-lasting depression of cerebral metabolic rate and blood flow and to an attenuated metabolic and circulatory response to physiological stimuli. However, the corresponding responses to induced seizures are retained, demonstrating preserved metabolic and circulatory capacity. The objective of the present study was to explore how a preceding period of ischemia (15 min) alters the release of free fatty acids (FFAs) and diacylglycerides (DAGs), the formation of cyclic nucleotides, and the influx/efflux of Ca(2+), following intense neuronal stimulation. For that purpose, seizure activity was induced with bicuculline for 30 s or 5 min at 6 h after the ischemia. Extracellular Ca(2+) concentration (Ca(2+)(e)) was recorded, and the tissue was frozen in situ for measurements of levels of FFAs, DAGs, and cyclic nucleotides. Six hours after ischemia, the FFA concentrations were normalized, but there was a lowering of the content of 20:4 in the DAG fraction. Cyclic AMP levels returned to normal values, but cyclic GMP content was reduced. Seizures induced in postischemic animals showed similar changes in Ca(2+)(e), as well as in levels of FFAs, DAGs, and cyclic nucleotides, as did seizures induced in nonischemic control animals, with the exception of an attenuated rise in 20:4 content in the DAG fraction. We conclude that, at least in the neocortex, seizure-induced phospholipid hydrolysis and cyclic cAMP/cyclic GMP formation are not altered by a preceding period of ischemia, nor is there a change in the influx/efflux of Ca(2+) during seizure discharge or in associated spreading depression.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号