首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 93 毫秒
1.

Key message

A fully acetylated, soluble CO preparation of mean DP of ca. 7 was perceived with high sensitivity by M. truncatula in a newly designed versatile root elicitation assay.

Abstract

The root system of legume plants interacts with a large variety of microorganisms, either pathogenic or symbiotic. Understanding how legumes recognize and respond specifically to pathogen-associated or symbiotic signals requires the development of standardized bioassays using well-defined preparations of the corresponding signals. Here we describe the preparation of chitin oligosaccharide (CO) fractions from commercial chitin and their characterization by a combination of liquid-state and solid-state nuclear magnetic resonance spectroscopy. We show that the CO fraction with highest degree of polymerization (DP) became essentially insoluble after lyophilization. However, a fully soluble, fully acetylated fraction with a mean DP of ca. 7 was recovered and validated by showing its CERK1-dependent activity in Arabidopsis thaliana. In parallel, we developed a versatile root elicitation bioassay in the model legume Medicago truncatula, using a hydroponic culture system and the Phytophthora β-glucan elicitor as a control elicitor. We then showed that M. truncatula responded with high sensitivity to the CO elicitor, which caused the production of extracellular reactive oxygen species and the transient induction of a variety of defense-associated genes. In addition, the bioassay allowed detection of elicitor activity in culture filtrates of the oomycete Aphanomyces euteiches, opening the way to the analysis of recognition of this important legume root pathogen by M. truncatula.  相似文献   
2.
3.
Plants recognize microbial pathogens by discriminating pathogen-associated molecular patterns from self-structures. We study the non-host disease resistance of soybean (Glycine max L.) to the oomycete, Phytophthora sojae. Soybean senses a specific molecular pattern consisting of a branched heptaglucoside that is present in the oomycetal cell walls. Recognition of this elicitor may be achieved through a β-glucan-binding protein, which forms part of a proposed receptor complex. Subsequently, soybean mounts a complex defense response, which includes the increase of the cytosolic calcium concentration, the production of reactive oxygen species, and the activation of genes responsible for the synthesis of phytoalexins. We now report the identification of two mitogen-activated protein kinases (MAPKs) and one MAPK kinase (MAPKK) that may function as signaling elements in triggering the resistance response. The use of specific antisera enabled the identification of GmMPKs 3 and 6 whose activity is enhanced within the signaling pathway leading to defense reactions. Elicitor specificity of MAPK activation as well as the sensitivity against inhibitors suggested these kinases as part of the β-glucan signal transduction pathway. An upstream GmMKK1 was identified based on sequence similarity to other plant MAPKKs and its interaction with the MAPKs was analyzed. Recombinant GmMKK1 interacted predominantly with GmMPK6, with concomitant phosphorylation of the MAPK protein. Moreover, a preferential physical interaction between GmMKK1 and GmMPK6 was demonstrated in yeast. These results suggest a role of a MAPK cascade in mediating β-glucan signal transduction in soybean, similar to other triggers that activate MAPKs during innate immune responses in plants. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. The nucleotide sequences encoding the MAPKs and MAPKK1 from soybean can be accessed through the GenBank database under GenBank accession numbers AF104247, AF329506, and AY070230.  相似文献   
4.
5.

Background

Ginkgo biloba (Ginkgoaceae) is one of the most ancient living seed plants and is regarded as a living fossil. G. biloba has a broad spectrum of resistance or tolerance to many pathogens and herbivores because of the presence of toxic leaf compounds. Little is known about early and late events occurring in G. biloba upon herbivory. The aim of this study was to assess whether herbivory by the generalist Spodoptera littoralis was able to induce early signaling and direct defense in G. biloba by evaluating early and late responses.

Methodology/Principal Findings

Early and late responses in mechanically wounded leaves and in leaves damaged by S. littoralis included plasma transmembrane potential (Vm) variations, time-course changes in both cytosolic calcium concentration ([Ca2+]cyt) and H2O2 production, the regulation of genes correlated to terpenoid and flavonoid biosynthesis, the induction of direct defense compounds, and the release of volatile organic compounds (VOCs). The results show that G. biloba responded to hebivory with a significant Vm depolarization which was associated to significant increases in both [Ca2+]cyt and H2O2. Several defense genes were regulated by herbivory, including those coding for ROS scavenging enzymes and the synthesis of terpenoids and flavonoids. Metabolomic analyses revealed the herbivore-induced production of several flavonoids and VOCs. Surprisingly, no significant induction by herbivory was found for two of the most characteristic G. biloba classes of bioactive compounds; ginkgolides and bilobalides.

Conclusions/Significance

By studying early and late responses of G. biloba to herbivory, we provided the first evidence that this “living fossil” plant responds to herbivory with the same defense mechanisms adopted by the most recent angiosperms.  相似文献   
6.
We have previously shown that intact plants and cultured plant cells can metabolize and detoxify formaldehyde through the action of a glutathione-dependent formaldehyde dehydrogenase (FDH), followed by C-1 metabolism of the initial metabolite (formic acid). The cloning and heterologous expression of a cDNA for the glutathione-dependent formaldehyde dehydrogenase from Zea mays L. is now described. The functional expression of the maize cDNA in Escherichia coli proved that the cloned enzyme catalyses the NAD+- and glutathione (GSH)-dependent oxidation of formaldehyde. The deduced amino acid sequence of 41 kDa was on average 65% identical with class III alcohol dehydrogenases from animals and less than 60% identical with conventional plant alcohol dehydrogenases (ADH) utilizing ethanol. Genomic analysis suggested the existence of a single gene for this cDNA. Phylogenetic analysis supports the convergent evolution of ethanol-consuming ADHs in animals and plants from formaldehyde-detoxifying ancestors. The high structural conservation of present-day glutathione-dependent FDH in microorganisms, plants and animals is consistent with a universal importance of these detoxifying enzymes.  相似文献   
7.
The beta-glucan-binding protein (GBP) of soybean (Glycine max L.) has been shown to contain two different activities. As part of the plasma membrane-localized pathogen receptor complex, it binds a microbial cell wall elicitor, triggering the activation of defence responses. Additionally, the GBP is able to hydrolyze beta-1,3-glucans, as present in the cell walls of potential pathogens. The substrate specificity, the mode of action, and the stereochemistry of the catalysis have been elucidated. This defines for the first time the inverting mode of the catalytic mechanism of glycoside hydrolases belonging to family 81.  相似文献   
8.
A successful defense against potential pathogens requires that a host organism is able to discriminate between self and nonself structures. Soybean (Glycine max L.) exploits a specific molecular pattern, a 1,6-beta-linked and 1,3-beta-branched heptaglucoside (HG), present in cell walls of the oomycetal pathogen Phytophthora sojae, as a signal compound eliciting the onset of defense reactions. The specific and high affinity HG-binding site is contained in the beta-glucan-binding protein (GBP), which in turn is part of a proposed receptor complex. The ability to perceive and respond to Phytophthora cell wall-derived beta-glucan elicitors is exclusive to plants that belong to the Fabaceae. However, we propose that the presence of the GBP is essential, but not sufficient for beta-glucan elicitor-dependent disease resistance because genes encoding GBP-related proteins can be retrieved from many plant species. Furthermore, we show that the GBP is composed of two different carbohydrateactive protein domains, one containing the beta-glucan-binding site, and the other related to glucan endoglucosidases of fungal origin. The glucan hydrolase displays most likely an endo-specific mode of action, cleaving only 1,3-beta-d-glucosidic linkages of oligoglucosides consisting of at least four moieties. Thus, the intrinsic endo-1,3-beta-glucanase activity of the GBP is perfectly suited during initial contact with Phytophthora to release oligoglucoside fragments enriched in motifs that constitute ligands for the high affinity binding site present in the same protein. The concept of innate immunity in plants receives substantial support by this highly sophisticated system using ancient enzyme modules as an active part of the recognition mechanism.  相似文献   
9.
Soybean cell suspension cultures have been used to investigate the role of the elevation of the cytosolic Ca(2+) concentration in beta-glucan elicitors-induced defence responses, such as H(2)O(2) and phytoalexin production. The intracellular Ca(2+) concentration was monitored in transgenic cells expressing the Ca(2+)-sensing aequorin. Two lines of evidence showed that a transient increase of the cytosolic Ca(2+) concentration is not necessarily involved in the induction of H(2)O(2) generation: (i) a Bradyrhizobium japonicum cyclic beta-glucan induced the H(2)O(2) burst without increasing the cytosolic Ca(2+) concentration; (ii) two ion channel blockers (anthracene-9-carboxylate, A9C; 5-nitro-2-(3-phenylpropylamino)-benzoate, NPPB) could not prevent a Phytophthora soja beta-glucan elicitor-induced H(2)O(2) synthesis but did prevent a cytosolic Ca(2+) concentration increase. Moreover, A9C and NPPB inhibited P. sojae beta-glucan-elicited defence-related gene inductions as well as the inducible accumulation of phytoalexins, suggesting that the P. sojae beta-glucan-induced transient cytosolic Ca(2+) increase is not necessary for the elicitation of H(2)O(2) production but is very likely required for phytoalexin synthesis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号