首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   5篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2005年   1篇
  2004年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1984年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
1.
An experiment was conducted to evaluate the interaction between predation, substrate, and spatial refugia in the organization of a stream insect community (Reeds Creek, Pendleton Co., West Virginia). Patterns of insect colonization were compared between fish exclusion cages and open controls that allowed access to vertebrate predators. Each cage contained 4 different substrates that varied in the relative amount of spatial refugia. Fish had little influence on the diversity or abundance of any insect taxa, even when spatial refugia were limited. The only significant effect due to predation, was an increased diversity of large (>8 mm) invertebrates in the absence of predators. However, because these taxa were relatively rare, the overall role of fish predation on insect community structure was minimal.In contrast, substrate had a marked effect on insect colonization. Insects were always more abundant (number/basket) on loose substrates containing large numbers of interstitial spaces, compared to cement-embedded substrates with few refuges available. In addition, invertebrates were more abundant on loose gravel compared to loose cobbles. Howver, when substrate preferencesrd were examined according to insect density (number/m2), loose cobbles were generally the preferred substrate. The present experiment rejects the hypothesis that patterns of substrate colonization can be explained as differential insect mortality by predators, due to varying amounts of refugia. Alternative mechanisms such as differing amounts of trapped detritus and substrate surface area may account for substrate preference.  相似文献   
2.
The supply and demand of omega‐3 highly unsaturated fatty acids (ω‐3 HUFA) in natural ecosystems may lead to resource limitation in a diverse array of animal taxa. Here, we review why food quality in terms of ω‐3 HUFAs is important, particularly for neural tissue, across a diversity of animal taxa ranging from invertebrate zooplankton to vertebrates (including humans). Our review is focused on ω‐3 HUFAs rather than other unsaturated fatty acids because these compounds are especially important biochemically, but scarce in nature. We discuss the dichotomy between ω‐3 HUFA availability between aquatic primary producers, which are often rich in these compounds, and terrestrial primary producers, which are contain little to none of them. We describe the use of fatty acids as qualitative and quantitative tracers for reconstructing animal diets in natural ecosystems. Next, we discuss both direct and indirect ecological implications of ω‐3 HUFA limitation at the individual, population, food web, and ecosystem scales, which include: changes in behavior, species composition, secondary production rates, trophic transfer efficiency and cross‐ecosystem subsidies. We finish by highlighting future research priorities including a need for more research on ω‐3 HUFAs in terrestrial systems, more research their importance for higher order consumers, and more research on the food web and ecosystem‐scale effects of ω‐3 HUFA limitation. Synthesis Mismatches between the supply of and demand for omega‐3 highly unsaturated fatty acids (ω‐3 HUFA) in natural ecosystems have the potential to result in resource limitation across a diverse array of ecosystems. We combined perspectives from ecology and nutritional science to develop a unified synthesis of ω‐3 HUFA ecology. We reviewed the importance of ω‐3 HUFAs for animals, the striking differences in ω‐3 HUFA availability at the base of terrestrial versus aquatic food webs, and the implications of ω‐3 HUFA limitation for food webs. We finished by highlighting research priorities in the field including more research on ω‐3 HUFAs in terrestrial systems, on higher order consumers, and at the food web and ecosystem‐scales.  相似文献   
3.
Hydrobiologia - High- to mid-elevation streams are often oligotrophic, but harbor diverse groups of aquatic animals that can satisfy a substantial proportion of nutrient demand. Therefore, we...  相似文献   
4.
5.
Throughout Amazonia, overfishing has decimated populations of fruit-eating fishes, especially the large-bodied characid, Colossoma macropomum. During lengthy annual floods, frugivorous fishes enter vast Amazonian floodplains, consume massive quantities of fallen fruits and egest viable seeds. Many tree and liana species are clearly specialized for icthyochory, and seed dispersal by fish may be crucial for the maintenance of Amazonian wetland forests. Unlike frugivorous mammals and birds, little is known about seed dispersal effectiveness of fishes. Extensive mobility of frugivorous fish could result in extremely effective, multi-directional, long-distance seed dispersal. Over three annual flood seasons, we tracked fine-scale movement patterns and habitat use of wild Colossoma, and seed retention in the digestive tracts of captive individuals. Our mechanistic model predicts that Colossoma disperses seeds extremely long distances to favourable habitats. Modelled mean dispersal distances of 337-552 m and maximum of 5495 m are among the longest ever reported. At least 5 per cent of seeds are predicted to disperse 1700-2110 m, farther than dispersal by almost all other frugivores reported in the literature. Additionally, seed dispersal distances increased with fish size, but overfishing has biased Colossoma populations to smaller individuals. Thus, overexploitation probably disrupts an ancient coevolutionary relationship between Colossoma and Amazonian plants.  相似文献   
6.
The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback.  相似文献   
7.
Ecological stoichiometry offers a framework for predicting how animal species vary in recycling nutrients, thus providing a mechanism for how animal species identity mediates ecosystem processes. Here we show that variation in the rates and ratios at which 28 vertebrate species (fish, amphibians) recycled nitrogen (N) and phosphorus (P) in a tropical stream supports stoichiometry theory. Mass-specific P excretion rate varied 10-fold among taxa and was negatively related to animal body P content. In addition, the N : P ratio excreted was negatively related to body N : P. Body mass (negatively related to excretion rates) explained additional variance in these excretion parameters. Body P content and P excretion varied much more among taxonomic families than among species within families, suggesting that familial composition may strongly influence ecosystem-wide nutrient cycling. Interspecific variation in nutrient recycling, mediated by phylogenetic constraints on stoichiometry and allometry, illustrates a strong linkage between species identity and ecosystem function.  相似文献   
8.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   
9.
Cross system subsidies of energy and materials can be a substantial fraction of food web fluxes in ecosystems, especially when autochthonous production is strongly limited by light or nutrients. We explored whether assimilation of terrestrial energy varied in specific consumer taxa collected from streams of different sizes and resource availabilities. Since headwater streams are often unproductive, we expected that inputs from surrounding terrestrial systems (i.e. leaf litter, terrestrial invertebrates) would be a more important food source for consumers than in mid‐size rivers that have more open canopies and higher amounts of primary production available for consumers. We collected basal resources, invertebrates, and fish along a gradient in stream size in the Adirondack Mountains (NY, USA) and in Trinidad and Tobago and analyzed all samples for hydrogen isotopes as a means of differentiating biomass derived from allochthonous versus autochthonous sources. We found significant differences in allochthonous energy use within individual consumer taxa, showing that some taxa range from being entirely allochthonous to entirely autochthonous depending on where they were collected on the stream size gradient (grazers and collector–gatherer functional feeding groups), while other taxa are relatively fixed in the source of energy they assimilate (shredder and predator functional feeding groups). Consistent with expectations, allochthonous energy use was positively correlated with canopy cover in both regions for most feeding groups, with individuals from small, shaded streams having a more pronounced allochthonous signal than individuals collected from larger streams with less canopy cover. However, consumers in the shredder/detritivore feeding group did not vary among sites in their allochthonous energy use, and had a mostly allochthonous signal regardless of canopy cover and algal biomass. Our results demonstrate that the importance of energy from terrestrial subsidies can vary markedly but are similar in both temperate and tropical streams, suggesting a widely consistent pattern.  相似文献   
10.
Diverse microbial consortia profoundly influence animal biology, necessitating an understanding of microbiome variation in studies of animal adaptation. Yet, little is known about such variability among fish, in spite of their importance in aquatic ecosystems. The Trinidadian guppy, Poecilia reticulata, is an intriguing candidate to test microbiome-related hypotheses on the drivers and consequences of animal adaptation, given the recent parallel origins of a similar ecotype across streams. To assess the relationships between the microbiome and host adaptation, we used 16S rRNA amplicon sequencing to characterize gut bacteria of two guppy ecotypes with known divergence in diet, life history, physiology and morphology collected from low-predation (LP) and high-predation (HP) habitats in four Trinidadian streams. Guts were populated by several recurring, core bacteria that are related to other fish associates and rarely detected in the environment. Although gut communities of lab-reared guppies differed from those in the wild, microbiome divergence between ecotypes from the same stream was evident under identical rearing conditions, suggesting host genetic divergence can affect associations with gut bacteria. In the field, gut communities varied over time, across streams and between ecotypes in a stream-specific manner. This latter finding, along with PICRUSt predictions of metagenome function, argues against strong parallelism of the gut microbiome in association with LP ecotype evolution. Thus, bacteria cannot be invoked in facilitating the heightened reliance of LP guppies on lower-quality diets. We argue that the macroevolutionary microbiome convergence seen across animals with similar diets may be a signature of secondary microbial shifts arising some time after host-driven adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号