首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   3篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2007年   4篇
  2006年   2篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1980年   1篇
  1968年   1篇
  1950年   2篇
  1949年   1篇
  1906年   1篇
  1905年   1篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
If sonomicrometry transducers could be implanted permanently into the diaphragm, direct measurements of costal and crural length and shortening could be made during recovery from the laparotomy and then indefinitely in an awake, non-anesthetized mammal. We report results from six canines in which we successfully implanted transducers onto the left hemidiaphragm through a midline laparotomy and measured segmental shortening and ventilation at intervals through 22 days of postoperative recovery. After laparotomy, breathing pattern, including tidal volume, respiratory rate and mean inspiratory flow, stabilized by the 4th postoperative day (POD). Tidal shortening of costal and crural segments increased from 1.82 and 1.45% of end-expiratory length (%LFRC) on the 2nd POD to 5.32 and 8.56% LFRC, respectively, after a mean of 22 POD. Segmental shortening did not stabilize until 10 POD, and the recovery process displayed a sequence of segmental motions: lengthening, biphasic inspiratory lengthening-shortening, and increasing simple shortening. Three weeks after implantation, costal and crural segments were stable and shortening 5.32 and 8.56% LFRC, respectively, and capable of shortening 49% LFRC with maximal phrenic stimulation. In a pair of recovered animals, the initial postoperative dysfunction did not recur after a subsequent, simple laparotomy. At postmortem examination, the chronically implanted sonomicrometer transducers were found to have evoked only a thin fibrotic capsule within the diaphragm.  相似文献   
3.
Ohne ZusammenfassungMit 3 Textabbildungen.  相似文献   
4.
Reduced cytokine production in ex vivo cultures has been regularly reported in patients suffering from sepsis syndrome. Using whole blood assays, we have now demonstrated that in sepsis patients, normal production of IL-8 was achieved with the higher concentration of lipopolysaccharide (LPS; 1 microg/ml) and with heat-killed streptococci, whereas the IL-8 production induced by lower LPS concentration (0.1 microg/ml) was significantly reduced as compared to healthy controls. In contrast, in patients undergoing cardiac surgery associated with cardio-pulmonary bypass, a group of patients with inflammation in the absence of infectious insult, none of the studied IL-8 productions were affected. Among the various anti-inflammatory cytokines known to regulate IL-8 production which we tested (i.e. IL-4, IL-10, IL-13, TGF-beta), IL-10 was the most active inhibitory cytokine in whole blood assays performed with blood samples from healthy subjects. However, its activity was not influenced by the amounts of LPS used. In addition, IL-10 also inhibited the heat-killed streptococci-induced IL-8 production and was the only cytokine to inhibit the release of IL-8 when TNF was added to LPS. It is worth noting that IL-13 which also inhibited the heat-killed streptococci-induced IL-8 production, failed to do so when the TNF production was analysed. Together, these data suggest that while circulating IL-10 in septic patients may be responsible for the hyporeactivity of circulating leukocytes, its presence is not sufficient to explain the observed dysregulation which occurs in septic patients.  相似文献   
5.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
6.
Persistent presence of PMN in airways is the hallmark of CF. Our aim was to assess PMN adherence, percentage of apoptotic airway PMN (aPMN), and IL-6 and IL-8 production when aPMN are in contact with airway epithelial cells. Before coculture, freshly isolated CF aPMN have greater spontaneous and TNF-alpha-induced apoptosis compared with blood PMN from the same CF patients and from aPMN of non-CF patients. We then examined cocultures of PMN isolated from CF and non-CF airways with bronchial epithelial cells bearing mutated cftr compared with cftr-corrected bronchial epithelial cells. After 18-h coculture, the number of CF aPMN adhered on cftr-deficient bronchial epithelial cells was 2.3-fold higher compared with the coculture of non-CF aPMN adhered on cftr-corrected bronchial epithelial cells. The percentage of CF apoptotic aPMN (9.5 +/- 0.2%) adhered on cftr-deficient bronchial epithelial cells was similar to the percentage of non-CF apoptotic aPMN adhered on cftr-corrected bronchial epithelial cells (10.3 +/- 0.7%). IL-6 and IL-8 levels were enhanced 6.5- and 2.9-fold, respectively, in coculture of CF aPMN adhered on cftr-deficient bronchial epithelial cells compared with coculture of non-CF aPMN adhered on cftr-corrected bronchial epithelial cells. Moreover, blocking surface adhesion molecules ICAM-1, VCAM-1, and E-selectin on cftr-deficient bronchial epithelial cells with specific MAbs inhibited the adherence of CF aPMN by 64, 51, and 50%, respectively. Our data suggest that in CF patients a high number of nonapoptotic PMN adhered on airway epithelium associated with elevated IL-6 and IL-8 levels may contribute to sustained and exaggerated inflammatory response in CF airways.  相似文献   
7.
As sensors of infection, innate immune cells are able to recognize pathogen-associated molecular patterns by receptors such as TLRs. NK cells present in many tissues contribute to inflammatory processes, particularly through the production of IFN-γ. They may display a protective role during infection but also a detrimental role during sterile or infectious systemic inflammatory response syndrome. Nevertheless, the exact status of NK cells during bacterial sepsis and their capacity directly to respond to TLR agonists remain unclear. The expression of TLRs in NK cells has been widely studied by analyzing the mRNA of these receptors. The aim of this study was to gain insight into TLR2/TLR4/TLR9 expression on/in murine NK cells at the protein level and determine if their agonists were able to induce cytokine production. We show, by flow cytometry, a strong intracellular expression of TLR2 and a low of TLR4 in freshly isolated murine spleen NK cells, similar to that of TLR9. In vitro, purified NK cells respond to TLR2, TLR4, and TLR9 agonists, in synergy with activating cytokines (IL-2, IL-15, and/or IL-18), and produce proinflammatory cytokines (IFN-γ and GM-CSF). Finally, we explored the possible tolerance of NK cells to TLR agonists after a polymicrobial sepsis (experimental peritonitis). For the first time, to our knowledge, NK cells are shown to become tolerant in terms of proinflammatory cytokines production after sepsis. We show that this tolerance is associated with a reduction of the CD27(+)CD11b(-) subset in the spleen related to the presence of regulatory T cells and mainly mediated by TGF-β.  相似文献   
8.
9.
Mononuclear phagocytes are among the first immune cells activated after pathogens invasion. Although they all derive from the same progenitor in the bone marrow, their characteristics differ on the compartment from which they are derived. In this work, we investigated the contribution of phagocytosis for tumor necrosis factor (TNF) production by murine mononuclear phagocytes (monocytes, peritoneal and alveolar macrophages) in response to heat-killed Staphylococcus aureus (HKSA). Mononuclear phagocytes behaved differently, depending on their compartment of residence. Indeed, when bacterial uptake or phagosome maturation was blocked, activation through membrane receptors was sufficient for a maximal production of TNF and interleukin-10 by peritoneal macrophages. In contrast, monocytes, and to a lesser extent alveolar macrophages, required phagocytosis for optimal cytokine production. While investigating the different actors of signalization, we found that p38 kinase and phosphatidylinositol 3-kinase were playing an important role in HKSA phagocytosis and TNF production. Furthermore, blocking the α(5)β(1)-integrin significantly decreased TNF production in response to HKSA in all three cell types. Finally, using mononuclear phagocytes from NOD2 knockout mice, we observed that TNF production in response to HKSA was dependent on NOD2 for monocytes and peritoneal macrophages. In conclusion, we demonstrate that the mechanisms of activation leading to TNF production in response to HKSA are specific for each mononuclear phagocyte population and involve different recognition processes and signaling pathways. The influence of the compartments on cell properties and behavior should be taken into account, to better understand cell physiology and host-pathogen interaction, and to define efficient strategies to fight infection.  相似文献   
10.
Coinfection with human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV) is a global problem that is more prevalent in injection drug users because they have a higher risk for acquiring both viruses. The roles of inflammatory cytokines and oxidative stress were examined in HIV-1- and HCV-coinfected human hepatic cells. Morphine (the bioactive product of heroin), HIV-1 Tat and the MN strain gp120 (gp120(MN)) proteins, and X4 HIV-1(LAI/IIIB) and R5 HIV-1(SF162) isolates were used to study the mechanisms of disease progression in HCV (JFH1)-infected Huh7.5.1 cell populations. HCV increased tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release and augmented production of reactive oxygen species (ROS), nitric oxide (NO), and 3-nitrotyrosine (3-NT) in Huh7.5.1 cells. Morphine preferentially affected R5-tropic, but not X4-tropic, HIV-1 interactions with Huh7.5.1 cells. HIV-1 proteins or isolates increased cytokine release in HCV-infected cells, while adding morphine to coinfected cells caused complex imbalances, significantly disrupting cytokine secretion depending on the cytokine, morphine concentration, exposure duration, and particular pathogen involved. Production of ROS, NO, and 3-NT increased significantly in HCV- and HIV-1-coexposed cells while exposure to morphine further increased ROS. The proteasome inhibitor MG132 significantly decreased oxyradicals, cytokine levels, and HCV protein levels. Our findings indicate that hepatic inflammation is increased by combined exposure to HCV and HIV-1, that the ubiquitin-proteasome system and NF-κB contribute to key aspects of the response, and that morphine further exacerbates the disruption of host defenses. The results suggest that opioid abuse and HIV-1 coinfection each further accelerate HCV-mediated liver disease by dysregulating immune defenses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号