首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  28篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   9篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2005年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Drivers of wildlife population dynamics are generally numerous and interacting. Some of these drivers may impact demographic processes that are difficult to estimate, such as immigration into the focal population. Populations may furthermore be small and subject to demographic stochasticity. All of these factors contribute to blur the causal relationship between past management action and current population trends. The urban Peregrine Falcon Falco peregrinus population in Cape Town, South Africa, increased from three pairs in 1997 to 18 pairs in 2010. Nestboxes were installed over this period to manage the interface between new urban pairs of Falcons and the human users of colonized buildings, and incidentally to improve breeding success. We used integrated population models (IPMs) formally to combine information from a capture–mark–recapture study, monitoring of reproductive success and counts of population size. As all local demographic processes were directly observed, the IPM approach also allowed us to estimate immigration by difference. The provision of nestboxes, as a possible stimulant of population growth, improved breeding success and accounted for an estimated 3–26% of the population increase. The most important driver of growth, however, was immigration. Despite low sample sizes, the IPM approach allowed us to obtain relatively precise estimates of the population‐level impact of nestbox deployment. The goal of conservation interventions is often to increase population size, so the effectiveness of such interventions should ideally be assessed at the population level. IPMs are powerful tools in this context for combining demographic information that may be limited due to small population size or practical constraints on monitoring. Our study quantitatively documented both the immigration process that led to growth of a small population and the effect of a management action that helped the process.  相似文献   
2.
Reduced expression of the Indy (I'm Not Dead, Yet) gene in D.?melanogaster and its homolog in C.?elegans prolongs life span and in D.?melanogaster augments mitochondrial biogenesis in a manner akin to caloric restriction. However, the cellular mechanism by which Indy does this is unknown. Here, we report on the knockout mouse model of the mammalian Indy (mIndy) homolog, SLC13A5. Deletion of mIndy in mice (mINDY(-/-) mice) reduces hepatocellular ATP/ADP ratio, activates hepatic AMPK, induces PGC-1α, inhibits ACC-2, and reduces SREBP-1c levels. This signaling network promotes hepatic mitochondrial biogenesis, lipid oxidation, and energy expenditure and attenuates hepatic de novo lipogenesis. Together, these traits protect mINDY(-/-) mice from the adiposity and insulin resistance that evolve with high-fat feeding and aging. Our studies demonstrate a profound effect of mIndy on mammalian energy metabolism and suggest that mINDY might be a therapeutic target for the treatment of obesity and type 2 diabetes.  相似文献   
3.
Aging is a phenomenon that is associated with profound medical implications. Idiopathic epiretinal membrane (iEMR) and macular hole (MH) are the major vision‐threatening vitreoretinal diseases affecting millions of aging people globally, making these conditions an important public health issue. iERM is characterized by fibrous tissue developing on the surface of the macula, which leads to biomechanical and biochemical macular damage. MH is a small breakage in the macula and is associated with many ocular conditions. Although several individual factors and pathways are suggested, a systems pathology level understanding of the molecular mechanisms underlying these disorders is lacking. Therefore, we performed mass spectrometry‐based label‐free quantitative proteomics analysis of the vitreous proteomes from patients with iERM and MH to identify the key proteins, as well as the multiple interconnected biochemical pathways, contributing to the development of these diseases. We identified a total of 1,014 unique proteins, many of which are linked to inflammation and the complement cascade, revealing the inflammation processes in retinal diseases. Additionally, we detected a profound difference in the proteomes of iEMR and MH compared to those of diabetic retinopathy with macular edema and rhegmatogenous retinal detachment. A large number of neuronal proteins were present at higher levels in the iERM and MH vitreous, including neuronal adhesion molecules, nervous system development proteins, and signaling molecules, pointing toward the important role of neurodegenerative component in the pathogenesis of age‐related vitreoretinal diseases. Despite them having marked similarities, several unique vitreous proteins were identified in both iERM and MH, from which candidate targets for new diagnostic and therapeutic approaches can be provided.  相似文献   
4.
Naked mole‐rats (Heterocephalus glaber) can be extremely long‐lived and are resistant to cancer. Hence, they have been proposed as a model organism for delayed ageing. Adaptation to a constant hypoxic and hypercapnic environment has been suggested as reason for their apparent ability to tolerate oxidative stress. Nevertheless, little is known about the natural habitat to which the species evolved. Naked mole‐rat burrow environments were assessed in Ethiopia and Kenya. Despite reported thermolability of naked mole‐rats, skin temperature upon capture varied (23.7–35.4°C), mostly within the species’ thermoneutral zone, demonstrating their ability to maintain homoiothermy even under wide fluctuations of burrow temperature (24.6–48.8°C) and humidity (31.2%–92.8%), which are far greater than previously reported. Burrow temperature regularly alternates during the daytime and night‐time, driving convective currents that circulate air in the tunnels. Consequently, concentrations of CO2 and O2 in burrows only slightly deviated from surface atmosphere. This contradicts the assumption of constant hypoxia/hypercapnia in subterranean burrows. In addition to diffusion, animal movement and occasional wind‐driven ventilation, our data support the temperature‐driven convective model of circulation. The naked mole‐rat burrow is a relatively normoxic subterranean microenvironment with considerable fluctuations in temperature and humidity.  相似文献   
5.
Early‐life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture–recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971–1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large‐scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.  相似文献   
6.
7.
8.
β-Alanine is an important precursor for the production of food additives, pharmaceuticals, and nitrogen-containing chemicals. Compared with the conventional chemical routes for β-alanine production, the biocatalytic routes using l-aspartate-α-decarboxylase (ADC) are more attractive when energy and environment are concerned. However, ADC’s poorly understood properties and its inherent mechanism-based inactivation significantly limited the application of this enzyme. In this study, three genes encoding the ADC enzymes from Escherichia coli, Corynebacterium glutamicum, and Bacillus subtilis were overexpressed in E. coli. Their properties including specific activity, thermostability, and mechanism-based inactivation were characterized. The ADC enzyme from B. subtilis, which had higher specific activity and thermostability than the others, was selected for further study. In order to improve its activity and relieve its mechanism-based inactivation by molecular engineering so as to improve its catalytic stability, a high-throughput fluorometric assay of β-alanine was developed. From a library of 4000 mutated enzymes, two variants with 18–22% higher specific activity and 29–64% higher catalytic stability were obtained. The best variant showed 50% higher β-alanine production than the wild type after 8 h of conversion of l-aspartate, showing great potential for industrial biocatalytic production of β-alanine.  相似文献   
9.
Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals.  相似文献   
10.
In a rapidly changing world understanding the capacity of populations to adapt to novel environments is increasingly urgent. Timing of breeding can be a highly flexible trait and adjustments in this trait can potentially buffer populations from climate change and facilitate the colonisation of new environments. Recent range‐expansions into novel climatic regimes provide a valuable opportunity to investigate the implications of plasticity in timing of breeding for population processes. Black sparrowhawks have recently colonised the Cape Peninsula of South Africa where they experience dramatically different weather patterns to those in their historical range. These include a total reversal in the rainfall regime, with the majority of rain falling in the winter as opposed to the summer months. We investigate the breeding phenology of black sparrowhawks in relation to both regional and local climate variation and, using a long‐term dataset, explore the implications of phenological shifts for reproductive success and population growth following colonisation. In the recently colonised Cape Peninsula the breeding season began up to three months earlier than within their historical range and these early breeding attempts produced more offspring. Population models suggested that this adjustment assisted the colonisation of the Cape Peninsula, reducing the probability of extinction by 23%. Contrary to expectations, we found little support for the hypothesis that black sparrowhawks were responding to local variation in rainfall. We suggest that shifts in breeding phenology may be driven in part by other novel processes, such as interspecific competition for nest sites and lower temperatures during late summer. These results provide insight into the processes that facilitated the colonisation of a novel climatic regime highlighting the potential role of a diverse range of factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号