首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   15篇
  国内免费   1篇
  124篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   6篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   10篇
  2007年   16篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   4篇
  1984年   1篇
  1983年   1篇
  1976年   2篇
  1970年   2篇
排序方式: 共有124条查询结果,搜索用时 0 毫秒
1.
Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotic prophylaxis (IAP) is the current prevention strategy given to pregnant women with confirmed vaginal GBS colonization. Due to antibiotic resistance identified in GBS, we previously developed another strategy using a bacteriophage lytic enzyme, PlyGBS, to reduce vaginal GBS colonization. In this study, various DNA mutagenesis methods were explored to produce PlyGBS mutants with increased lytic activity against GBS. Several hyperactive mutants were identified that contain only the endopeptidase domain found in the N-terminal region of PlyGBS and represent only about one-third of the wild-type PlyGBS in length. Significantly, these mutants not only have 18–28-fold increases in specific activities compared to PlyGBS, but they also have a similar activity spectrum against several streptococcal species. One of the hyperactive mutants, PlyGBS90-1, reduced the GBS colonization from >5 logs of growth per mouse to <50 colony-forming units (cfu) 4 h post treatment (∼4-log reduction) using a single dose in a mouse vaginal model. A reduction in GBS colonization before delivery should significantly reduce neonatal GBS infection providing a safe alternative to IAP.  相似文献   
2.
3.
The immune response to the complete streptococcal M6 protein was examined by kinetic ELISA to determine the reactivity of rabbit and human sera to M6 peptides representing 82% of the native molecule. The results revealed that rabbits immunized with purified native M6 protein or whole streptococci responded by reacting early and predominantly to one of the three sequence repeat regions of the molecule, the B-repeat, antibodies which have been shown to be non-opsonic. Antibodies to peptides representing the hypervariable N-terminal and adjacent A-repeat regions appear when opsonic antibodies are detected in the serum. Antibodies to peptides located within the conserved C-terminal half of the molecule (proximal to the cell) were restricted even after several immunizations. An examination of human sera from individuals with no recent streptococcal infection (greater than 3 yr), revealed that those sera opsonic for M6 streptococci contained antibodies reactive predominantly to the N-terminal and A-repeat regions, supporting the view that opsonic antibodies are long lived. Nonopsonic human sera to M6 streptococci exhibited a low reactivity to all peptides. However, by Western blot analysis, all human sera tested contained antibodies to the conserved region of the molecule, whereas only sera opsonic for M6 streptococci reacted with the variable region. Evidence is presented supporting the view that antibodies to the conserved regions of the M molecule may be conformation dependent.  相似文献   
4.
5.
In aqueous solution some proteins undergo large-scale movements of secondary structures, subunits or domains, referred to as protein “breathing”, that define a native-state ensemble of structures. These fluctuations are sensitive to the nature and concentration of solutes and other proteins and are thereby expected to be different in the crowded interior of a cell than in dilute solution. Here we use a combination of wide angle X-ray scattering (WAXS) and computational modeling to derive a quantitative measure of the spatial scale of conformational fluctuations in a protein solution. Concentration-dependent changes in the observed scattering intensities are consistent with a model of structural fluctuations in which secondary structures undergo rigid-body motions relative to one another. This motion increases with decreasing protein concentration or increasing temperature. Analysis of a set of five structurally and functionally diverse proteins reveals a diversity of kinetic behaviors. Proteins with multiple disulfide bonds exhibit little or no increase in breathing in dilute solutions. The spatial extent of structural fluctuations appears highly dependent on both protein structure and concentration and is universally suppressed at very high protein concentrations.  相似文献   
6.
The infrequent occurrence of septic shock in patients with inherited deficiencies of the terminal complement components experiencing meningococcal disease led us to suspect that the terminal complement complex is involved in vascular leakage. To this end, the permeabilizing effect of the cytolytically inactive soluble terminal complement complex (SC5b-9) was tested in a Transwell system measuring the amount of fluorescein-labeled BSA (FITC-BSA) leaked through a monolayer of endothelial cells. The complex caused increased permeability to FITC-BSA after 15 min as opposed to the prompt response to bradykinin (BK). The effect of SC5b-9 was partially reduced by HOE-140 or CV-3988, two selective antagonists of BK B2 and platelet-activating factor receptors, respectively, and was completely neutralized by the mixture of the two antagonists. Also, DX-88, a specific inhibitor of kallikrein, partially inhibited the activity of SC5b-9. The permeabilizing factor(s) released after 30 min of incubation of endothelial cells with SC5b-9 caused a prompt leakage of albumin like BK. Intravital microscopy confirmed both the extravasation of circulating FITC-BSA across mesenteric microvessels 15 min after topical application of SC5b-9 and the complete neutralization by the mixture of HOE-140 and CV-3988. SC5b-9 induced opening of interendothelial junctions in mesenteric endothelium documented by transmission electron microscopy.  相似文献   
7.
8.
Bacterial surface proteins are important molecules in the infectivity and survival of pathogens. Surface proteins on gram-positive bacteria have been shown to attach via a transpeptidase, termed sortase, that cleaves an LPXTG sequence found close to the C termini of nearly all surface proteins on these bacteria. We previously identified a unique enzyme (LPXTGase) from Streptococcus pyogenes that also cleaves the LPXTG motif with a catalytic activity higher than that of sortase, suggesting that it plays an important role in the attachment process. We have now purified and characterized an LPXTGase from Staphylococcus aureus and found that it has both similar and unique features compared to the S. pyogenes enzyme. The S. aureus enzyme is glycosylated and contains unusual amino acids, like its streptococcal counterpart. Like the streptococcal enzyme, staphylococcal LPXTGase has an overrepresentation of amino acids found in the peptidoglycan, i.e., glutamine/glutamic acid, glycine, alanine, and lysine, and furthermore, we find that these amino acids are present in the enzyme at precisely the same ratio at which they are found in the peptidoglycan for the respective organism. This suggests that enzymes responsible for wall assembly may also play a role in the construction of LPXTGase.  相似文献   
9.
Crustaceans such as crabs and lobsters clean or 'groom' their olfactory organ, the antennule, by wiping it through a pair of mouthpart appendages, the third maxillipeds. In the lobster, only a few chemicals found in prey extracts, especially glutamate, elicit grooming. Chemosensory input driving grooming is likely to be mediated via sensilla located on antennules and third maxillipeds. Chemosensory antennular sensilla are innervated by neurons with central projections either to the glomerular olfactory lobe (aesthetasc sensilla) or to non-glomerular antennular neuropils (nonaesthetasc sensilla). By selectively ablating the chemosensory sensilla on the antennules and the third maxillipeds we have determined that the aesthetascs are necessary and sufficient to drive grooming behavior. Chemosensory activation of antennular grooming behavior likely follows a 'labeled-line' model in that aesthetasc neurons tuned to glutamate provide adequate input via the olfactory lobe to motor centers in the brain controlling antennular movements.  相似文献   
10.
We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号