首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  25篇
  2023年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
A novel series of indole/indazole-aminopyrimidines was designed and synthesized with an aim to achieve optimal potency and selectivity for the c-Jun kinase family or JNKs. Structure guided design was used to optimize the series resulting in a significant potency improvement. The best compound (17) has IC50 of 3 nM for JNK1 and 20 nM for JNK2, with greater than 40-fold selectivity against other kinases with good physicochemical and pharmacokinetic properties.  相似文献   
2.
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interac- tion partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis~ In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.  相似文献   
3.
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (K(m) = 2.3 mM, k(cat) = 15.6 s(-1)). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H(2)O(2), a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.  相似文献   
4.
The formation of self-associates of glycyrrhetinic acid (GLA), an aglycone of glycyrrhizic acid (GA), has been studied by electrospray ionization mass spectrometry. It has been shown for the first time that, analogously to triterpene saponins having free carboxyl groups, GLA stereoisomers can form self-associates. The capacity of GLA to form self-associates has been confirmed by the mass spectrometry data. It has been found that the ionization of GLA self-associates with the formation of an anion proceeds rather weakly. The ionization of GLA in the positive ion mode goes on effectively and makes it possible to record multidimensional structures of one to eight 18α-GLA molecules and from one to nine 18β-GLA molecules. The structure of GLA associates and their stability are demonstrated most comprehensively in positive ion mass spectra. As a whole, the sets and intensity of peaks for 18α- and 18β-GLA correlate well. The results of the mass spectrometry study show the capacity of 18α- and 18β-GLA stereoisomers to form self-associates, which indicates a high potentiality of GLA in providing noncovalent interactions during the formation of supramolecular complexes. Similarly to the saponins of licorice and ivy, GLA stereoisomers may form a potential basis for the synthesis of a new generation of noncovalent molecular complexes and novel highly effective medicinal substances owing to a possible improvement in bioaccessibility and possible synergistic effects.  相似文献   
5.
A novel series of CCR5 antagonists has been identified, utilizing leads from high-throughput screening which were further modified based on insights from competitor molecules. Lead optimization was pursued by balancing opposing trends of metabolic stability and potency. Selective and potent analogs with good pharmacokinetic properties were successfully developed.  相似文献   
6.
The differentiation of a surface layer on the embryonal mass is one ofthe first markers for normal embryo development in Norway spruce. We havepreviously shown that this differentiation is closely interlinked with a switchin the expression pattern of Pa18, a putative lipidtransfer protein (LTP) gene. In transgenic embryos ofNorway spruce under- or overexpressing the Pa18 gene under the maize ubiquitin promoter, there is no switch in the expression pattern ofthe Pa18 gene and the embryos are blocked in theirdevelopment early during maturation. In this work, we describe how under- andoverexpression of Pa18 affect sequential developmentalstages during somatic embryogenesis. The differentiation of somatic embryosfromproembryogenic masses is not affected, but the morphology of early somaticembryos is changed. Both under and overexpressing somatic embryos can gothrougha maturation process, although at a much lower frequency than the controlembryos. Germination is not affected by altered Pa18expression. However, plants regenerated from under and highly overexpressingsomatic embryos cannot survive prolonged culture.  相似文献   
7.
Development of multiple embryos from a single zygote, the phenomenon called monozygotic polyembryony, is a widespread reproductive strategy found in higher plants and especially in gymnosperms. The enigma of plant monozygotic polyembryony is that only one embryo in a polyembryonic seed usually survives while the others are eliminated at an early stage. Here we report that programmed cell death (PCD) is the major mechanism responsible for elimination of subordinate embryos in a polyembryonic seed. Using post-fertilized pine (Pinus sylvestris) ovules, we show that once the dominant embryo is selected and, subsequently, the entire female gametophyte is affected by PCD, the cells of subordinate embryos initiate an autolytic self-destruction program. The progression of embryonic PCD follows a rigid basal-apical pattern, first killing the most basally situated cells, adjacent to the suspensor, and then proceeding towards the apical region until all cells in the embryonal mass are doomed. Our data demonstrate that during polyembryony, PCD serves to halt competition among monozygotic embryos in order to ensure survival of one embryo.  相似文献   
8.
Several coniferous species can be propagated via somatic embryogenesis. This is a useful method for clonal propagation, but it can also be used for studying how embryo development is regulated in conifers. However, in conifers it is not known to what extent somatic and zygotic embryos develop similarly, because there has been little research on the origin and development of somatic embryos. A time-lapse tracking technique has been set up, and the development of more than 2000 single cells and few-celled aggregates isolated from embryogenic suspension cultures of Norway spruce (Picea abies L. Karst.) and embedded in thin layers of agarose has been traced. Experiments have shown that somatic embryos develop from proembryogenic masses which pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages I, II and III) to transdifferentiate to somatic embryos. Microscopic inspection of different types of structures has revealed that proembryogenic masses are characterized by high interclonal variation of shape and cellular constitution. In contrast, somatic embryos are morphologically conservative structures, possessing a distinct protoderm-like cell layer as well as embryonal tube cells and suspensor. The lack of staining of the arabinogalactan protein epitope recognized by the monoclonal antibody JIM13 was shown to be an efficient marker for distinguishing proembryogenic masses from somatic embryos. The vast majority of cells in proembryogenic masses expressed this epitope and none of cells in the early somatic embryos. The conditions that promote cell proliferation (i.e. the presence of exogenous auxin and cytokinin), inhibit somatic embryo formation; instead, continuous multiplication of stage I proembryogenic masses by unequal division of embryogenic cells with dense cytoplasm is the prevailing process. Once somatic embryos have formed, their further development to mature forms requires abscisic acid and shares a common histodifferentiation pattern with zygotic embryos. Although the earliest stages of somatic embryo development comparable to proembryogeny could not be characterized, the subsequent developmental processes correspond closely to what occurs in the course of early and late zygotic embryogeny. A model for somatic embryogenesis pathways in Picea abies is presented.  相似文献   
9.
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (Km = 2.3 mM, kcat = 15.6 s−1). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H2O2, a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.  相似文献   
10.

Background  

Molecular evolution of carbohydrate binding modules (CBM) is a new approach for the generation of glycan-specific molecular probes. To date, the possibility of performing affinity maturation on CBM has not been investigated. In this study we show that binding characteristics such as affinity can be improved for CBM generated from the CBM4-2 scaffold by using random mutagenesis in combination with phage display technology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号