首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2016年   1篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
2.
Investigation of weak screening hits led to the identification of N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-2-phenylacetamides and N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-N'-benzylureas as potent, selective ligands for the human CCR5 chemokine receptor.  相似文献   
3.
Atwell  B.J.  Fillery  I. R. P.  McInnes  K. J.  Smucker  A. J. M. 《Plant and Soil》2002,241(2):259-269
Triticum aestivum L. (cv. Gutha), a short-season wheat, was grown to maturity in large monoliths of duplex soil (sand over sandy-clay) in a daylight phytotron mimicking field conditions. Either 15N-labelled ammonium sulphate ((NH4)2SO4) or urea was banded into the soil at a rate of 30 kg N ha–1: even though roots were about 20% heavier when grown in the presence of (NH4)2SO4 for 86 d (P<0.05), above-ground mass was not affected by the source of nitrogen. At four times through crop development up to grain-filling (50, 56, 70 and 86 d after sowing) shoots were labelled heavily with 14CO2 with two purposes. First, to trace `instantaneous' assimilate movement over 24 h, revealing relative sink strengths throughout plants. This, in turn, allowed precise measurements of live root mass and the proportion of recent photoassimilates deposited in the rhizosphere. Although root systems were sparse, even in surface soil layers, they were strong sinks for photoassimilates early in development (0–50 d), supporting the conversion of inorganic applied nitrogen (N) to soil organic forms. In the presence of roots, up to 28% of 15N was immobilised, whereas only 12% of labelled ammonium sulphate was immobilised in unplanted plots in spite of a favourable moisture status in both treatments. The effect of plants on rates of 15N transformation is ascribed to recently imported photoassimilates sustaining rhizosphere metabolism. Not more than 15% of recently fixed carbon imported by roots was recovered from the rhizoplane, suggesting that a highly localised microbial biomass supported vigorous immobilisation of soil N. Thus, more than twice as much applied N was destined for soil organic fractions as for root material. By these processes, root- and soil-immobilised N become substantial stores of applied N and together with shoot N accounted for all the applied N under dryland conditions.  相似文献   
4.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   
5.
Palta  J. A.  Fillery  I. R. P. 《Plant and Soil》1993,155(1):179-181
A 15N leaf feeding technique was used to measure the extent of remobilisation and loss of nitrogen (N) that had been accumulated prior to anthesis in wheat plants that received three rates of N fertilizer. Uptake of postanthesis N to the heads was reduced as the quantity of applied N was increased. This reduction of postanthesis N uptake did not affect the quqntity of N in the heads because the loss of preanthesis accumulated N was reduced and the extent of remobilised preanthesis N increased at higher rates of N application. At the lowest rate of N application the increase in 15N in the heads of fertile shoots arose chiefly from the remobilisation of N in the stem supporting the head. At higher rates of N application this source of N was increasingly supplemented by N remobilised from infertile tillers and roots.  相似文献   
6.
Plant and Soil - Nitrification is the first step in several pathways that lead to losses of nitrogen from agricultural systems. Biological nitrification inhibition (BNI) refers to the ability of...  相似文献   
7.
Abscisic acid (ABA) was detected in aqueous extracts of a range of different soils, beneath a range of crops, pasture and forest species. Assuming that all the ABA is dissolved in the soil solution concentrations ranged from 0.6–2.8 nM. This is in the range which computer simulations predict is required in soils in order to prevent ABA release from the root hair zones of plant roots. The concentration of ABA in the soil solution was highest in acid soils and in soils with reduced moisture, and was lowest in moist, neutral and moderately alkaline soils. ABA in the soil solution of maize fields increased during the vegetative period. After incubation in soil for 72 h, radioactive ABA was degraded by 30–40%. Tetcyclacis, an inhibitor of the oxidative breakdown of ABA, completely prevented the degradation of ABA in the soil solution. Acid conditions and high salt concentrations significantly retarded ABA breakdown.  相似文献   
8.
Much work has gone into the management of nitrification through applications of chemicals known to inhibit enzyme function in nitrifiers with indifferent outcomes when tested in the field. Much less attention has been focused on the capacity of plants to modify nitrification in situ. Subbarao and coworkers in a series of neat and elegant studies have confirmed that a tropical grass species, Brachiaria humidicola, produces chemicals that inhibit nitrification in soil. Critical to the work was the use of a Nitrosomonas europaea strain (nitrifying bacteria) that had been specifically constructed to produce bioluminescence due to the expression of “luxAB’ genes during nitrification. This application led to the development of an assay that enabled the suppression of nitrification to be assessed directly. They produce evidence that the production of chemicals by Brachiaria humidicola roots, described as biological nitrification inhibitors (BNIs), is under plant control. However, the triggers or molecular controls for BNI production have yet to be ascertained. Examination of the capacity of major crops to produce BNIs, including wheat (Triticum aestivum), barley (Hordeum vulgare), rice (Oryza sativa) and maize (Zea mays) indicate that these do not have this capacity. Work is needed on wild relatives of these crops and the major temperate grass species such as Lolium perenne to determine whether these have the capacity to produce BNIs with an aim to introduce this capacity into domesticated lines. The work of Subbarao et al. highlights how molecular biology can be used to introduce traits into micro-organisms responsible for key soil N transformations in a way that facilitates analysis of the interaction between plants and the soil environment so crucial to their growth and survival.  相似文献   
9.
The nitrate uptake capacity of surface roots of spring wheat(Triticum aestivum L. cv. Kulin) was investigated followingwetting of dry surface soil. Plants were grown to stem elongationstage with adequate watering at depth while the surface soilwas allowed to dry. Eight weeks after sowing, water or a 15N-nitratesolution was added to the surface soil to simulate rainfall.Root growth and nitrate uptake were measured up to 4 d afterwetting on plants with unconfined nodal root growth and on plantswith the majority of nodal roots confined within small vials.Prior to wetting, plants from both nodal treatments had seminalroots with collapsed cortices along the upper 10 cm and manyshort, viable lateral roots. Nodal roots, where present, wereonly a few cm long and unbranched. Only plants with unconfinednodal roots were able to take up nitrate within the 24 h beforeany new root growth. By 2 d after wetting there was significantgrowth of the seminal lateral roots, and rapid growth and branchingof nodal roots. From 2 d after wetting, plants with confinednodal roots also took up nitrate, presumably due to the growthof the seminal lateral roots. Hence it appears as though thenodal roots in the unconfined treatment could immediately takeup nitrate, but the seminal roots required new lateral rootgrowth to become active in nitrate uptake. The plants with confinednodal roots had a lower nitrate uptake than those with unconfinednodal roots 4 d after wetting, indicating that the seminal rootsystem was not able to compensate for lack of nodal roots. Insufficientnitrate was taken up after 4 d, by plants from either nodalroot treatment, to increase the shoot N concentration significantly. Key words: Triticum aestivum, nitrate uptake, drought, seminal roots, nodal roots  相似文献   
10.
Brady  D. J.  Gregory  P. J.  Fillery  I. R. P. 《Plant and Soil》1993,(1):155-158
A technique was developed to determine the physiological activity of defined sections of seminal roots of wheat grown in sand. Wheat plants were grown for 2 weeks in narrow columns of N-deficient sand to which all other nutrients had been added. The columns were split longitudinally and 15N-labelled nitrate, in an agar medium, supplied to 2 cm sections of root. Shoots and roots were analysed after 24 h to determine the uptake of 15N. Three sections were examined on either the secondary or tertiary seminal root: 1 cm from the seed (basal segment), 35 cm from the seed (middle segment) and 4 cm from the root apex (apical segment). Total uptake was greatest from the basal and middle segments, declining by 50% from the apical segment. However, uptake per unit root length, including exposed sections of lateral roots, was not significantly different along the root.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号