首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2016年   1篇
  2013年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   
2.
Legumes are unique in their ability to establish symbiotic interactions with rhizobacteria, providing a source of assimilable nitrogen; this symbiosis is regulated by complex signaling process between the plant and the bacteria. The participation of specific protein kinases during the initial steps of the nodulation process has been established. However, their substrates or the signaling networks implicated are not fully understood. Herein, a phosphoproteomic analysis of Phaseolus vulgaris roots treated for 24 h with specific Nod factors was performed using an immobilized metal ion affinity chromatography enrichment and two-dimensional gel electrophoresis approach with mass spectrometry identification. A total of 33 protein spots showing more than 1.5-fold shift were identified (17 protein spots in which the relative abundance increased and 16 that decreased). The majority of the identified root phosphoproteins displaying an increased relative abundance are presumed to have functions related to the biosynthesis and folding of proteins, energy metabolism, or cytoskeleton rearrangements, which reflect the metabolic status of the roots as being part of the developmental processes leading to nodule initiation and the importance of cytoskeleton rearrangement in the P. vulgaris–rhizobia symbiosis. The proteins in which relative abundance decreased are associated with defense and oxido-reduction processes, which could indicate a suppression of plant defense responses during the establishment of the rhizobia–legume interaction and an increase of reactive oxygen species production.  相似文献   
3.
Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pHcyt) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pHcyt using spectral imaging microscopy. This approach allowed us to study pHcyt in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'a), maximum ratio (Rmax), and minimum ratio (Rmin) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pHcyt of each region. These studies indicated that glial cells exhibit pHcyt heterogeneities and pHcyt oscillations in both the absence and presence of physiological HCO3. The amplitude and frequency of the pHcyt oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na+/H+ exchanger- and HCO3-based H+-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pHcyt oscillations in glial cells. proton gradients; proton waves; carboxyseminaphthorhodafluor-1; 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号